Setting up a solar electric system is easy. The new source of power will integrate seamlessly with your existing utilities. Apart from settimg up the solar energy equipment, there will be no need to reconfigure or rewire your home. Our offerings include several pre-engineered, packaged systems for both residential and commercial applications, so there’s sure to be something that fits the needs of your home or business. Most solar panels last about 30 years, which means you will see the benefits of this new source of energy for decades to come.

Specifications: Colors: Red Rated power: 600W Nominal voltage: 12V Start-up wind speed: 2m/s Rated wind speed: 13m/s Survival wind speed: 45m/s Package weight: 13kg Wind wheel diameter: 0.9M Number of blades: 5 Blades material: Nylon fiber Nylon fiber: Three phase ac permanent magnet generator/Maglev generatorsThree phase ac permanent magnet generator/Maglev generators Controller system: Electromagnetic Speed regulation: The wind Angle automatically Working temperature: -40℃~80℃ Features: 1. Low start-up speed, high wind power utilization, light, cute, low vibration. 2.Simple to install and maintain. 3.For home use, For monitoring use, For boat / marine use, For wind solar hybrid streetlight use. Package: 1 x Wind Turbine Generators(with controller) 1 x Stainless steel.

When power flows from the generator to your house, electrons get mixed together on the wires. You can't specify which electrons you get, but you can make sure that your money goes to support clean, sustainable  generators, which has the effect of making the whole system "greener". To do this, you will need to look closely at utility marketing claims and materials. To ensure that the claims are truthful, many states now require disclosure labels, just like the nutrition labels on food packages. But don't hesitate to ask for more information directly from potential suppliers, including the percentage of power derived from each fuel source and the level of each of the above emissions compared with the regional average.
The use of a gearbox allows for better matching of the generator speed to that of the turbine but the disadvantage of using a gearbox is that as a mechanical component it is subjected to wear and tear reducing the efficiency of the system. Direct drive however may be more simple and efficient, but the generators rotor shaft and bearings are subjected to the full weight and rotational force of the rotor blades.
In 2006 California approved the 'California Solar Initiative', offering a choice of investment subsidies or FIT for small and medium systems and a FIT for large systems. The small-system FIT of $0.39 per kWh (far less than EU countries) expires in just 5 years, and the alternate "EPBB" residential investment incentive is modest, averaging perhaps 20% of cost. All California incentives are scheduled to decrease in the future depending as a function of the amount of PV capacity installed.
With feed-in tariffs, the financial burden falls upon the consumer. They reward the number of kilowatt-hours produced over a long period of time, but because the rate is set by the authorities, it may result in perceived overpayment. The price paid per kilowatt-hour under a feed-in tariff exceeds the price of grid electricity. Net metering refers to the case where the price paid by the utility is the same as the price charged.
Between maintenance and repairs, it would greatly help and keep your cost down if you can do some of the work yourself: Being able to safely tilt the turbine tower up or down will save you money. Understanding how the turbine works, how to stop it safely, how to trouble-shoot at least the minor issues can keep you in the black. We understand that installing a wind turbine is not for everyone. In fact, towers are dangerous, and for a good installation the devil is in the details. An experienced installer can make a real difference in putting up a turbine that will work better, and be more reliable over time. We really encourage you to have a professional installer to do the initial installation. However, throwing up your hands and calling your installer for routine maintenance, or every time there is a minor issue, will likely make you an unhappy wind turbine owner (even if it is your installer’s dream).
Another economic measure, closely related to the energy payback time, is the energy returned on energy invested (EROEI) or energy return on investment (EROI),[131] which is the ratio of electricity generated divided by the energy required to build and maintain the equipment. (This is not the same as the economic return on investment (ROI), which varies according to local energy prices, subsidies available and metering techniques.) With expected lifetimes of 30 years,[132] the EROEI of PV systems are in the range of 10 to 30, thus generating enough energy over their lifetimes to reproduce themselves many times (6–31 reproductions) depending on what type of material, balance of system (BOS), and the geographic location of the system.[133]
The energy number that is left over should be a good approximation of what you can expect from that VAWT. Compare the resulting numbers with those mentioned in just about all sales brochures of VAWT type turbines and it should be immediately clear that their marketing people are smoking The Good Stuff. There is no relation to physical reality in their numbers, they are consistently much too high. Keep in mind that the energy production numbers calculated here are ‘best case’; for a turbine in nice, smooth air. Most VAWTs are placed very close to the ground, or on buildings, where there is little wind and lots of turbulence. Under those conditions they will do much, much worse than predicted.

This discussion is mainly about factory-made grid-tie wind turbines. The off-grid crowd has an entirely different set of decisions and goals. The main ones are that for off-grid use economic viability in comparison with the electrical grid is not an issue, and a wind turbine can make up for the loss of sunlight (and PV electricity) in the winter months. For the DIY group there are several good turbine designs available; Hugh Piggott and the two Dans have written books that outline this step-by-step. Building your own turbine can be a great hobby, and some of the topics touched below apply (such as proper site selection), but this discussion is not about those. The decisions involved in making your own turbine, and the cost basis, have little overlap with a the process of having an installer put a factory-made turbine in your backyard.
With feed-in tariffs, the financial burden falls upon the consumer. They reward the number of kilowatt-hours produced over a long period of time, but because the rate is set by the authorities, it may result in perceived overpayment. The price paid per kilowatt-hour under a feed-in tariff exceeds the price of grid electricity. Net metering refers to the case where the price paid by the utility is the same as the price charged.
Throughout the country, more than half of all U.S. electricity customers now have an option to purchase some type of green power product from a retail electricity provider. Roughly one-quarter of the nation's utilities offer green power programs to customers, and voluntary retail sales of renewable energy in the United States totaled more than 12 billion kilowatt-hours in 2006, a 40% increase over the previous year.
At MOTHER EARTH NEWS, we are dedicated to conserving our planet's natural resources while helping you conserve your financial resources. You'll find tips for slashing heating bills, growing fresh, natural produce at home, and more. That's why we want you to save money and trees by subscribing through our earth-friendly automatic renewal savings plan. By paying with a credit card, you save an additional $5 and get 6 issues of MOTHER EARTH NEWS for only $12.95 (USA only).
Where the reputable, and more expensive manufacturers are good in honouring their warranties, you are likely on your own with the cheap stuff. Even with a good warranty, take our word for it that you would much rather not make use of it. Even if the manufacturer supplies replacement parts, it is still expensive to install them. Not to mention that your turbine will not be making energy meanwhile.

The ability of biomass and biofuels to contribute to a reduction in CO2 emissions is limited because both biomass and biofuels emit large amounts of air pollution when burned and in some cases compete with food supply. Furthermore, biomass and biofuels consume large amounts of water.[200] Other renewable sources such as wind power, photovoltaics, and hydroelectricity have the advantage of being able to conserve water, lower pollution and reduce CO2 emissions.

In Denmark by 1900, there were about 2500 windmills for mechanical loads such as pumps and mills, producing an estimated combined peak power of about 30 (MW). The largest machines were on 24-meter (79 ft) towers with four-bladed 23-meter (75 ft) diameter rotors. By 1908 there were 72 wind-driven electric generators operating in the United States from 5 kW to 25 kW. Around the time of World War I, American windmill makers were producing 100,000 farm windmills each year, mostly for water-pumping.[9]
Some of the second-generation renewables, such as wind power, have high potential and have already realised relatively low production costs. At the end of 2008, worldwide wind farm capacity was 120,791 megawatts (MW), representing an increase of 28.8 percent during the year,[30] and wind power produced some 1.3% of global electricity consumption.[31] Wind power accounts for approximately 20% of electricity use in Denmark, 9% in Spain, and 7% in Germany.[32][33] However, it may be difficult to site wind turbines in some areas for aesthetic or environmental reasons, and it may be difficult to integrate wind power into electricity grids in some cases.[10]
^ Jump up to: a b c Fridleifsson,, Ingvar B.; Bertani, Ruggero; Huenges, Ernst; Lund, John W.; Ragnarsson, Arni; Rybach, Ladislaus (11 February 2008). O. Hohmeyer and T. Trittin, ed. "The possible role and contribution of geothermal energy to the mitigation of climate change" (PDF). Luebeck, Germany: 59–80. Archived from the original (pdf) on 22 July 2011. Retrieved 6 April 2009.

The total number of commercial and industrial renewable energy deals will be even higher, as RMI's numbers refer only to contracts for large, off-site renewable energy projects. That means rooftop solar projects deployed by the likes of Ikea and Target are not included in the RMI deal tracker, which was updated this week at the Renewable Energy Buyers Alliance conference in Oakland, California.
Go-anywhere rechargeable battery pack keeps your handheld gear Go-anywhere rechargeable battery pack keeps your handheld gear going strong. Charge AA/AAA batteries from the sun or any USB port then power your phone MP3 GPS or perk up your tablet in a pinch. Kit included Nomad 7m v2 Solar Panel and Guide 10 Plus power pack. This ultra-lightweight kit ...  More + Product Details Close
Climate change concerns coupled with high oil prices and increasing government support are driving increasing rates of investment in the sustainable energy industries, according to a trend analysis from the United Nations Environment Programme. According to UNEP, global investment in sustainable energy in 2007 was higher than previous levels, with $148 billion of new money raised in 2007, an increase of 60% over 2006. Total financial transactions in sustainable energy, including acquisition activity, was $204 billion.[64]
In the case of a “wind turbine generator”, the wind pushes directly against the blades of the turbine, which converts the linear motion of the wind into the rotary motion necessary to spin the generators rotor and the harder the wind pushes, the more electrical energy can be generated. Then it is important to have a good wind turbine blade design to extract as much energy out of the wind as possible.

In 2007, the world's first turbine to create commercial amounts of energy using tidal power was installed in the narrows of Strangford Lough in Ireland. The 1.2 MW underwater tidal electricity generator takes advantage of the fast tidal flow in the lough which can be up to 4m/s. Although the generator is powerful enough to power up to a thousand homes, the turbine has a minimal environmental impact, as it is almost entirely submerged, and the rotors turn slowly enough that they pose no danger to wildlife.[48][49]

Solar electricity is inherently variable and predictable by time of day, location, and seasons. In addition solar is intermittent due to day/night cycles and unpredictable weather. How much of a special challenge solar power is in any given electric utility varies significantly. In a summer peak utility, solar is well matched to daytime cooling demands. In winter peak utilities, solar displaces other forms of generation, reducing their capacity factors.
As suppliers of inverters for turbines good, bad, and just plain ugly, we have pretty well seen it all when it comes to turbine failure. We can tell you unequivocally that you get what you pay for. Depending on your sense of adventure that can be good or bad; if you plan to go cheap, plan on (you) being the manufacturer’s R&D department and test center. Being a really good do-it-yourselfer with an understanding of wind turbines, alternators, and all things electric will come in very handy too. Just in case you do not believe us, you can read about it in this Green Power Talk thread. There are more threads with similar content on the forum, just browse around a little.
Climate change concerns coupled with high oil prices and increasing government support are driving increasing rates of investment in the sustainable energy industries, according to a trend analysis from the United Nations Environment Programme. According to UNEP, global investment in sustainable energy in 2007 was higher than previous levels, with $148 billion of new money raised in 2007, an increase of 60% over 2006. Total financial transactions in sustainable energy, including acquisition activity, was $204 billion.[64]
However, it has been found that high emissions are associated only with shallow reservoirs in warm (tropical) locales, and recent innovations in hydropower turbine technology are enabling efficient development of low-impact run-of-the-river hydroelectricity projects.[17] Generally speaking, hydroelectric plants produce much lower life-cycle emissions than other types of generation. Hydroelectric power, which underwent extensive development during growth of electrification in the 19th and 20th centuries, is experiencing resurgence of development in the 21st century. The areas of greatest hydroelectric growth are the booming economies of Asia. China is the development leader; however, other Asian nations are installing hydropower at a rapid pace. This growth is driven by much increased energy costs—especially for imported energy—and widespread desires for more domestically produced, clean, renewable, and economical generation.

A report by the United States Geological Survey estimated the projected materials requirement in order to fulfill the US commitment to supplying 20% of its electricity from wind power by 2030. They did not address requirements for small turbines or offshore turbines since those were not widely deployed in 2008, when the study was created. They found that there are increases in common materials such as cast iron, steel and concrete that represent 2–3% of the material consumption in 2008. Between 110,000 and 115,000 metric tons of fiber glass would be required annually, equivalent to 14% of consumption in 2008. They did not see a high increase in demand for rare metals compared to available supply, however rare metals that are also being used for other technologies such as batteries which are increasing its global demand need to be taken into account. Land, whbich might not be considered a material, is an important resource in deploying wind technologies. Reaching the 2030 goal would require 50,000 square kilometers of onshore land area and 11,000 square kilometers of offshore. This is not considered a problem in the US due to its vast area and the ability to use land for farming and grazing. A greater limitation for the technology would be the variability and transmission infrastructure to areas of higher demand.[54]
As of 2014, offshore wind power amounted to 8,771 megawatt of global installed capacity. Although offshore capacity doubled within three years (from 4,117 MW in 2011), it accounted for only 2.3% of the total wind power capacity. The United Kingdom is the undisputed leader of offshore power with half of the world's installed capacity ahead of Denmark, Germany, Belgium and China.
Jump up ^ Artificial photosynthesis as a frontier technology for energy sustainability. Thomas Faunce, Stenbjorn Styring, Michael R. Wasielewski, Gary W. Brudvig, A. William Rutherford, Johannes Messinger, Adam F. Lee, Craig L. Hill, Huub deGroot, Marc Fontecave, Doug R. MacFarlane, Ben Hankamer, Daniel G. Nocera, David M. Tiede, Holger Dau, Warwick Hillier, Lianzhou Wang and Rose Amal. Energy Environ. Sci., 2013, Advance Article doi:10.1039/C3EE40534F

In terms of ocean energy, another third-generation technology, Portugal has the world's first commercial wave farm, the Aguçadora Wave Park, under construction in 2007. The farm will initially use three Pelamis P-750 machines generating 2.25 MW.[44][45] and costs are put at 8.5 million euro. Subject to successful operation, a further 70 million euro is likely to be invested before 2009 on a further 28 machines to generate 525 MW.[46] Funding for a wave farm in Scotland was announced in February, 2007 by the Scottish Executive, at a cost of over 4 million pounds, as part of a £13 million funding packages for ocean power in Scotland. The farm will be the world's largest with a capacity of 3 MW generated by four Pelamis machines.[47] (see also Wave farm).

Environmental impact of wind power includes effect on wildlife, but can be mitigated if proper monitoring and mitigation strategies are implemented.[76] Thousands of birds, including rare species, have been killed by the blades of wind turbines,[77] though wind turbines contribute relatively insignificantly to anthropogenic avian mortality. For every bird killed by a wind turbine in the US, nearly 500,000 are killed by each of feral cats and buildings.[78] In comparison, conventional coal fired generators contribute significantly more to bird mortality, by incineration when caught in updrafts of smoke stacks and by poisoning with emissions byproducts (including particulates and heavy metals downwind of flue gases). Further, marine life is affected by water intakes of steam turbine cooling towers (heat exchangers) for nuclear and fossil fuel generators, by coal dust deposits in marine ecosystems (e.g. damaging Australia's Great Barrier Reef) and by water acidification from combustion monoxides.
 ★【Excellence Performance】Wind Turbine, Nylon fiber blades,rated power:600W ★【Scientific Design】Using reinforced fiberglass on wind wheel blades and the aerodynamic lantern shape design, the coefficient of wind energy utilisation is increased, so as increased annual electricity generation capacity. ★【Low Noise】Low start up wind speed, high efficiency, small size, low vibration ★【Premium Material】The shell is made of aluminum alloy die-casting, with double bearing carrier, anti-typhoon capacity is stronger, safe and reliable operation. Easy installation, low maintenance.
In its 2014 edition of the Technology Roadmap: Solar Photovoltaic Energy report, the International Energy Agency (IEA) published prices for residential, commercial and utility-scale PV systems for eight major markets as of 2013 (see table below).[2] However, DOE's SunShot Initiative has reported much lower U.S. installation prices. In 2014, prices continued to decline. The SunShot Initiative modeled U.S. system prices to be in the range of $1.80 to $3.29 per watt.[76] Other sources identify similar price ranges of $1.70 to $3.50 for the different market segments in the U.S.,[77] and in the highly penetrated German market, prices for residential and small commercial rooftop systems of up to 100 kW declined to $1.36 per watt (€1.24/W) by the end of 2014.[78] In 2015, Deutsche Bank estimated costs for small residential rooftop systems in the U.S. around $2.90 per watt. Costs for utility-scale systems in China and India were estimated as low as $1.00 per watt.[79]