“Trump’s Keystone XL Tar Sands Oil Pipeline Promise, Unkept and Undone” • The federal judge for the District of Montana who overturned permit for the Keystone XL pipeline issued an order that all but guarantees the project will die another death by a thousand cuts. He ordered a complete do-over on economic and environmental impacts. [CleanTechnica]
Thermal storage technologies allow heat or cold to be stored for periods of time ranging from hours or overnight to interseasonal, and can involve storage of sensible energy (i.e. by changing the temperature of a medium) or latent energy (i.e. through phase changes of a medium, such between water and slush or ice). Short-term thermal storages can be used for peak-shaving in district heating or electrical distribution systems. Kinds of renewable or alternative energy sources that can be enabled include natural energy (e.g. collected via solar-thermal collectors, or dry cooling towers used to collect winter's cold), waste energy (e.g. from HVAC equipment, industrial processes or power plants), or surplus energy (e.g. as seasonally from hydropower projects or intermittently from wind farms). The Drake Landing Solar Community (Alberta, Canada) is illustrative. borehole thermal energy storage allows the community to get 97% of its year-round heat from solar collectors on the garage roofs, which most of the heat collected in summer.[58][59] Types of storages for sensible energy include insulated tanks, borehole clusters in substrates ranging from gravel to bedrock, deep aquifers, or shallow lined pits that are insulated on top. Some types of storage are capable of storing heat or cold between opposing seasons (particularly if very large), and some storage applications require inclusion of a heat pump. Latent heat is typically stored in ice tanks or what are called phase-change materials (PCMs).
Markets for second-generation technologies are strong and growing, but only in a few countries. The challenge is to broaden the market base for continued growth worldwide. Strategic deployment in one country not only reduces technology costs for users there, but also for those in other countries, contributing to overall cost reductions and performance improvement.
The ability of biomass and biofuels to contribute to a reduction in CO2 emissions is limited because both biomass and biofuels emit large amounts of air pollution when burned and in some cases compete with food supply. Furthermore, biomass and biofuels consume large amounts of water.[200] Other renewable sources such as wind power, photovoltaics, and hydroelectricity have the advantage of being able to conserve water, lower pollution and reduce CO2 emissions.
Renewable energy technologies are getting cheaper, through technological change and through the benefits of mass production and market competition. A 2011 IEA report said: "A portfolio of renewable energy technologies is becoming cost-competitive in an increasingly broad range of circumstances, in some cases providing investment opportunities without the need for specific economic support," and added that "cost reductions in critical technologies, such as wind and solar, are set to continue."[99]

In the next tutorial about Wind Turbine Generators we will look at DC machines and how we can use a DC Generator to produce electricity from the power of the wind. To learn more about “Wind Turbine Generators”, or obtain more wind energy information about the various wind turbine generating systems available, or to explore the advantages and disadvantages of wind energy, Click Here to get your copy of one of the top “Wind Turbine Guides” today direct from Amazon.
Any solar PV system that’s tied to the grid will use a bi-directional meter. When you use electricity from the grid, you’ll see your meter move forward. But when your solar PV system produces electricity, any excess will go back into the grid and your meter will move backward. This is called “net metering,” and the utility company will credit your bill for the excess electricity generated.
The key disadvantages include the relatively low rotational speed with the consequential higher torque and hence higher cost of the drive train, the inherently lower power coefficient, the 360-degree rotation of the aerofoil within the wind flow during each cycle and hence the highly dynamic loading on the blade, the pulsating torque generated by some rotor designs on the drive train, and the difficulty of modelling the wind flow accurately and hence the challenges of analysing and designing the rotor prior to fabricating a prototype.[28]
Reliance on rare earth minerals for components has risked expense and price volatility as China has been main producer of rare earth minerals (96% in 2009) and had been reducing its export quotas of these materials.[56] In recent years, however, other producers have increased production of rare earth minerals and China has removed its reduced export quota on rare earths leading to an increased supply and decreased cost of rare earth minerals, increasing the viability of the implementation of variable speed generators in wind turbines on a large scale.[57]
Consumers throughout the United States have a third green power option: Renewable Energy Certificates (RECs or sometimes "green tags"). A REC represents the environmental attributes or benefits of renewable electricity generation (usually one credit = one kilowatt-hour). RECs can be purchased in almost any quantity and are usually available from someone other than your electricity provider. What you pay for is the benefit of adding clean, renewable energy generation to the regional or national electricity grid. The overall environmental benefit of purchasing a green pricing or green marketing product versus RECs is exactly the same. RECs provide a "green" option for people in any state, but are ideal for people who live in states where green pricing and green marketing options are not available. 
Within emerging economies, Brazil comes second to China in terms of clean energy investments. Supported by strong energy policies, Brazil has one of the world’s highest biomass and small-hydro power capacities and is poised for significant growth in wind energy investment. The cumulative investment potential in Brazil from 2010 to 2020 is projected as $67 billion.[155]

Al Gore says the reason is innovation. “The cost-reduction curve that came to technologies like computers, smartphones and flat-panel televisions has come to solar energy, wind energy and battery storage,” he says. “I remember being startled decades ago when people first started to explain to me that the cost of computing was being cut in half every 18 to 24 months. And now this dramatic economic change has begun to utterly transform the electricity markets.”
The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. Charles Fritts installed the world's first rooftop photovoltaic solar array, using 1%-efficient selenium cells, on a New York City roof in 1884.[28] However, development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum.[29] In 1974 it was estimated that only six private homes in all of North America were entirely heated or cooled by functional solar power systems.[30] The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies.[31][32] Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the United States (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer–ISE).[33] Between 1970 and 1983 installations of photovoltaic systems grew rapidly, but falling oil prices in the early 1980s moderated the growth of photovoltaics from 1984 to 1996.
In the 1980s and early 1990s, most photovoltaic modules provided remote-area power supply, but from around 1995, industry efforts have focused increasingly on developing building integrated photovoltaics and power plants for grid connected applications (see photovoltaic power stations article for details). Currently the largest photovoltaic power plant in North America is the Nellis Solar Power Plant (15 MW).[24][25] There is a proposal to build a Solar power station in Victoria, Australia, which would be the world's largest PV power station, at 154 MW.[26][27] Other large photovoltaic power stations include the Girassol solar power plant (62 MW),[28] and the Waldpolenz Solar Park (40 MW).[29]
Another situation where a small wind turbine can make good sense is in case your province, state, or country has rebates or other incentives that make it cheap to install one (just keep ongoing maintenance and repair cost in mind as well). While we would like to advocate responsible spending of government money, the small wind industry needs many more customers to mature. It takes time and installation numbers for manufacturers to work out the bugs, make better turbines, and make them cheaper.
As suppliers of inverters for turbines good, bad, and just plain ugly, we have pretty well seen it all when it comes to turbine failure. We can tell you unequivocally that you get what you pay for. Depending on your sense of adventure that can be good or bad; if you plan to go cheap, plan on (you) being the manufacturer’s R&D department and test center. Being a really good do-it-yourselfer with an understanding of wind turbines, alternators, and all things electric will come in very handy too. Just in case you do not believe us, you can read about it in this Green Power Talk thread. There are more threads with similar content on the forum, just browse around a little.
Renewable energy technologies are getting cheaper, through technological change and through the benefits of mass production and market competition. A 2011 IEA report said: "A portfolio of renewable energy technologies is becoming cost-competitive in an increasingly broad range of circumstances, in some cases providing investment opportunities without the need for specific economic support," and added that "cost reductions in critical technologies, such as wind and solar, are set to continue."[99]
There are two main reasons for this, according to Kevin Haley, BRC program manager. First, there’s been strong continued support from major tech companies with large electricity loads. Facebook and AT&T, for instance, have procured the most new renewable energy capacity in 2018, with other large deals from Microsoft, Apple and Walmart. The second reason is that the pool of corporate customers is starting to expand.
The energy it calculates is in kWh per year, the diameter of the wind turbine rotor is in meters, the wind speed is annual average for the turbine hub height in m/s. The equation uses a Weibull wind distribution with a factor of K=2, which is about right for inland sites. An overall efficiency of the turbine, from wind to electrical grid, of 30% is used. That is a reasonable, real-world efficiency number. Here is a table that shows how average annual wind speed, turbine size, and annual energy production relate:
The majority of green pricing programs charge a higher price per kilowatt-hour to support an increased percentage of renewable sources or to buy discrete kilowatt-hour blocks of renewable energy. Other programs have fixed monthly fees, round up customer bills, charge for units of renewable capacity, or offer renewable energy systems for lease or purchase.
Many companies are taking the push for 100 percent renewables seriously because they see it as good business — not just today, but for the long term. At the time of publication, 152 companies of various sizes have made a commitment to go 100 percent renewable through RE100. Big names like Apple and Google have already met their targets, while other companies are looking out further into the future, some as far as 2040. That timeline indicates companies are looking beyond today’s prices and present-day marketing benefits.
Wind turbines are manufactured in a wide range of vertical and horizontal axis. The smallest turbines are used for applications such as battery charging for auxiliary power for boats or caravans or to power traffic warning signs. Slightly larger turbines can be used for making contributions to a domestic power supply while selling unused power back to the utility supplier via the electrical grid. Arrays of large turbines, known as wind farms, are becoming an increasingly important source of intermittent renewable energy and are used by many countries as part of a strategy to reduce their reliance on fossil fuels. One assessment claimed that, as of 2009, wind had the "lowest relative greenhouse gas emissions, the least water consumption demands and... the most favourable social impacts" compared to photovoltaic, hydro, geothermal, coal and gas.[1]

These include E-glass/carbon, E-glass/aramid and they present an exciting alternative to pure glass or carbon reinforcements. that the full replacement would lead to 80% weight savings, and cost increase by 150%, while a partial (30%) replacement would lead to only 90% cost increase and 50% weight reduction for 8 m turbine. The world currently longest wind turbine rotor blade, the 88.4 m long blade from LM Wind Power is made of carbon/glass hybrid composites. However, additional investigations are required for the optimal composition of the materials [50]
This is a wind map of the lands south of the border (the US) for 30 meters (100′) height, a very common height for small wind turbine installations. Anything green or yellow is not a good wind resource location. Here in Canada the distribution is similar, in that the good places are in the mid-west and very close to the shores of the great lakes and oceans.
Geothermal energy - Just under the earth's crust are massive amounts of thermal energy, which originates from both the original formation of the planet and the radioactive decay of minerals. Geothermal energy in the form of hot springs has been used by humans for millennia for bathing, and now it's being used to generate electricity. In North America alone, there's enough energy stored underground to produce 10 times as much electricity as coal currently does.

Jump up ^ Faunce, T. A.; Lubitz, W.; Rutherford, A. W. (Bill); MacFarlane, D.; Moore, G. F.; Yang, P.; Nocera, D. G; Moore, Tom A; Gregory, Duncan H; Fukuzumi, Shunichi; Yoon, Kyung B.; Armstrong, F. A.; Wasielewski, M. R.; Styring, S. (2013), "Energy and environment policy case for a global project on artificial photosynthesis", Energy & Environmental Science, 6 (3): 695–698, doi:10.1039/C3EE00063J, archived from the original on 16 August 2013
Wave power, which captures the energy of ocean surface waves, and tidal power, converting the energy of tides, are two forms of hydropower with future potential; however, they are not yet widely employed commercially. A demonstration project operated by the Ocean Renewable Power Company on the coast of Maine, and connected to the grid, harnesses tidal power from the Bay of Fundy, location of world's highest tidal flow. Ocean thermal energy conversion, which uses the temperature difference between cooler deep and warmer surface waters, has currently no economic feasibility.
Subsequently, Spain, Italy, Greece—that enjoyed an early success with domestic solar-thermal installations for hot water needs—and France introduced feed-in tariffs. None have replicated the programmed decrease of FIT in new contracts though, making the German incentive relatively less and less attractive compared to other countries. The French and Greek FIT offer a high premium (EUR 0.55/kWh) for building integrated systems. California, Greece, France and Italy have 30–50% more insolation than Germany making them financially more attractive. The Greek domestic "solar roof" programme (adopted in June 2009 for installations up to 10 kW) has internal rates of return of 10–15% at current commercial installation costs, which, furthermore, is tax free.
A more reliable grid: Even if we're not ready to completely transition to renewable energy sources of power, supplementing the grid with green electricity helps increase grid reliability. You can also produce your own green electricity by installing solar panels or wind turbines at home. If the grid goes down for some reason, you may be able to keep your power on using your on-site renewable power generation system.
Renewable energy (and energy efficiency) are no longer niche sectors that are promoted only by governments and environmentalists. The increased levels of investment and the fact that much of the capital is coming from more conventional financial actors suggest that sustainable energy options are now becoming mainstream.[63] An example of this would be The Alliance to Save Energy's Project with Stahl Consolidated Manufacturing, (Huntsville, Alabama, USA) (StahlCon 7), a patented generator shaft designed to reduce emissions within existing power generating systems, granted publishing rights to the Alliance in 2007.
Several large-scale energy storage suggestions for the grid have been done. Worldwide there is over 100 GW of Pumped-storage hydroelectricity. This improves efficiency and decreases energy losses but a conversion to an energy storing mains electricity grid is a very costly solution. Some costs could potentially be reduced by making use of energy storage equipment the consumer buys and not the state. An example is batteries in electric cars that would double as an energy buffer for the electricity grid. However besides the cost, setting-up such a system would still be a very complicated and difficult procedure. Also, energy storage apparatus' as car batteries are also built with materials that pose a threat to the environment (e.g. Lithium). The combined production of batteries for such a large part of the population would still have environmental concerns. Besides car batteries however, other Grid energy storage projects make use of less polluting energy carriers (e.g. compressed air tanks and flywheel energy storage).
As of 2011, small solar PV systems provide electricity to a few million households, and micro-hydro configured into mini-grids serves many more. Over 44 million households use biogas made in household-scale digesters for lighting and/or cooking, and more than 166 million households rely on a new generation of more-efficient biomass cookstoves.[26] United Nations' Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity.[14] At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. National renewable energy markets are projected to continue to grow strongly in the coming decade and beyond, and some 120 countries have various policy targets for longer-term shares of renewable energy, including a 20% target of all electricity generated for the European Union by 2020. Some countries have much higher long-term policy targets of up to 100% renewables. Outside Europe, a diverse group of 20 or more other countries target renewable energy shares in the 2020–2030 time frame that range from 10% to 50%.[11]
Most installers overrate the available wind resource. The majority of small wind turbine installations underperforms their predictions, often by a wide margin. Since wind speed is the most important parameter for turbine energy production, getting that wrong has large consequences (the power in the wind goes with the cube of the wind speed, so double the wind speed and the power in it is 2 * 2 * 2 = 8x as much). You have to be realistic about your annual average wind speed.
When a turbine is mounted on a rooftop the building generally redirects wind over the roof and this can double the wind speed at the turbine. If the height of a rooftop mounted turbine tower is approximately 50% of the building height it is near the optimum for maximum wind energy and minimum wind turbulence. While wind speeds within the built environment are generally much lower than at exposed rural sites,[29][30] noise may be a concern and an existing structure may not adequately resist the additional stress.
Most current solar power plants are made from an array of similar units where each unit is continuously adjusted, e.g., with some step motors, so that the light converter stays in focus of the sun light. The cost of focusing light on converters such as high-power solar panels, Stirling engine, etc. can be dramatically decreased with a simple and efficient rope mechanics.[55] In this technique many units are connected with a network of ropes so that pulling two or three ropes is sufficient to keep all light converters simultaneously in focus as the direction of the sun changes.
Efficiency can decrease slightly over time, one of the main reasons being dust and insect carcasses on the blades which alters the aerodynamic profile and essentially reduces the lift to drag ratio of the airfoil. Analysis of 3128 wind turbines older than 10 years in Denmark showed that half of the turbines had no decrease, while the other half saw a production decrease of 1.2% per year.[19] Ice accretion on turbine blades has also been found to greatly reduce the efficiency of wind turbines, which is a common challenge in cold climates where in-cloud icing and freezing rain events occur.[20] Vertical turbine designs have much lower efficiency than standard horizontal designs.[21]

For a decade now, we’ve stopped this project in its tracks. Thousands of us have shown up at public hearings, tens of thousand of us have marched in the streets, hundreds of thousands of us have taken action. We’ve made phone calls, we’ve rallied at the white house, we’ve organized, worked in solidarity with the tribes and now, a talented group of pro-environment lawyers have held the Trump administration accountable in court. 

The stiffness of composites is determined by the stiffness of fibers and their volume content. Typically, E-glass fibers are used as main reinforcement in the composites. Typically, the glass/epoxy composites for wind blades contain up to 75 weight % glass. This increases the stiffness, tensile and compression strength. A promising source of the composite materials in the future is glass fibers with modified compositions like S-glass, R-glass etc. Some other special glasses developed by Owens Corning are ECRGLAS, Advantex and most recently WindStrand glass fibers. [49]
A 1.5 (MW) wind turbine of a type frequently seen in the United States has a tower 80 meters (260 ft) high. The rotor assembly (blades and hub) weighs 22,000 kilograms (48,000 lb). The nacelle, which contains the generator, weighs 52,000 kilograms (115,000 lb). The concrete base for the tower is constructed using 26,000 kilograms (58,000 lb) reinforcing steel and contains 190 cubic meters (250 cu yd) of concrete. The base is 15 meters (50 ft) in diameter and 2.4 meters (8 ft) thick near the center.[43]

A more recent concept for improving our electrical grid is to beam microwaves from Earth-orbiting satellites or the moon to directly when and where there is demand. The power would be generated from solar energy captured on the lunar surface In this system, the receivers would be "broad, translucent tent-like structures that would receive microwaves and convert them to electricity". NASA said in 2000 that the technology was worth pursuing but it is still too soon to say if the technology will be cost-effective.[77]
Biofuels - Rather than burning biomass to produce energy, sometimes these renewable organic materials are transformed into fuel. Notable examples include ethanol and biodiesel. Biofuels provided 2.7 percent of the world's fuels for road transport in 2010, and have the potential to meet more than 25 percent of world demand for transportation fuels by 2050.
Biofuels - Rather than burning biomass to produce energy, sometimes these renewable organic materials are transformed into fuel. Notable examples include ethanol and biodiesel. Biofuels provided 2.7 percent of the world's fuels for road transport in 2010, and have the potential to meet more than 25 percent of world demand for transportation fuels by 2050.
Using 100% renewable energy was first suggested in a Science paper published in 1975 by Danish physicist Bent Sørensen.[150] It was followed by several other proposals, until in 1998 the first detailed analysis of scenarios with very high shares of renewables were published. These were followed by the first detailed 100% scenarios. In 2006 a PhD thesis was published by Czisch in which it was shown that in a 100% renewable scenario energy supply could match demand in every hour of the year in Europe and North Africa. In the same year Danish Energy professor Henrik Lund published a first paper[151] in which he addresses the optimal combination of renewables, which was followed by several other papers on the transition to 100% renewable energy in Denmark. Since then Lund has been publishing several papers on 100% renewable energy. After 2009 publications began to rise steeply, covering 100% scenarios for countries in Europe, America, Australia and other parts of the world.[152]
Setting up a solar electric system is easy. The new source of power will integrate seamlessly with your existing utilities. Apart from settimg up the solar energy equipment, there will be no need to reconfigure or rewire your home. Our offerings include several pre-engineered, packaged systems for both residential and commercial applications, so there’s sure to be something that fits the needs of your home or business. Most solar panels last about 30 years, which means you will see the benefits of this new source of energy for decades to come.
There have been "not in my back yard" (NIMBY) concerns relating to the visual and other impacts of some wind farms, with local residents sometimes fighting or blocking construction.[192] In the United States, the Massachusetts Cape Wind project was delayed for years partly because of aesthetic concerns. However, residents in other areas have been more positive. According to a town councilor, the overwhelming majority of locals believe that the Ardrossan Wind Farm in Scotland has enhanced the area.[193]
The Stirling solar dish combines a parabolic concentrating dish with a Stirling engine which normally drives an electric generator. The advantages of Stirling solar over photovoltaic cells are higher efficiency of converting sunlight into electricity and longer lifetime. Parabolic dish systems give the highest efficiency among CSP technologies.[18] The 50 kW Big Dish in Canberra, Australia is an example of this technology.[14]
×