“solar energy breakthrough _solar energy environmental advantages and disadvantages”

Most stock quote data provided by BATS. Market indices are shown in real time, except for the DJIA, which is delayed by two minutes. All times are ET. Disclaimer. Morningstar: © Morningstar, Inc. All Rights Reserved. Factset: FactSet Research Systems Inc. . All rights reserved. Chicago Mercantile Association: Certain market data is the property of Chicago Mercantile Exchange Inc. and its licensors. All rights reserved. Dow Jones: The Dow Jones branded indices are proprietary to and are calculated, distributed and marketed by DJI Opco, a subsidiary of S&P Dow Jones Indices LLC and have been licensed for use to S&P Opco, LLC and CNN. Standard & Poor’s and S&P are registered trademarks of Standard & Poor’s Financial Services LLC and Dow Jones is a registered trademark of Dow Jones Trademark Holdings LLC. All content of the Dow Jones branded indices © S&P Dow Jones Indices LLC and/or its affiliates.

Solar energy—power from the sun—is a vast and inexhaustible resource that can supply a significant portion of our electricity needs. A range of technologies is used to convert the sun’s energy into electricity, including solar collectors and photovoltaic panels.

WindyNation 100 Watt 12V Polycrystalline Solar Panel Complete Kit with LCD P30L Solar Controller. Perfect for RV’s, boats and other off grid applications. – Auxiliary power for RV’s. Popular with commercial RV retrofitters.

Amorphous solar panels use the non-crystalline, allotropic form of silicon, in which a thin layer of this silicon substrate is applied to the back of a plate of glass. These panels are much cheaper and less energy efficient, yet they are more versatile in how they can be used. For example, amorphous solar panels can be manufactured into long sheets of roofing material. Thin Film solar panels also fall into the amorphous category. This type of cells can be mounted on renewable energy flexible backing, making them more suited for mobile applications.

Nearly all the gasoline sold in the United States today is mixed with 10% ethanol,[126] and motor vehicle manufacturers already produce vehicles designed to run on much higher ethanol blends. Ford, Daimler AG, and GM are among the automobile companies that sell “flexible-fuel” cars, trucks, and minivans that can use gasoline and ethanol blends ranging from pure gasoline up to 85% ethanol. By mid-2006, there were approximately 6 million ethanol compatible vehicles on U.S. roads.[127]

The most well-known GTL technology is Fischer-Tropsch (FT), which is used at very large gas fields, such as Qatar’s massive North Field, to transform natural gas into a slate of end products including diesel and lubricants. But the enormous capital investment required – Shell’s Pearl plant in Qatar cost about $20bn, for instance – makes FT uneconomical for anything but the largest gas fields.

While hydropower is the biggest source of renewable energy in the United States, geothermal power is the smallest, accounting for about 0.4 percent of the net electricity produced in the United States in 2015[iv]. Globally, the use of hydroelectricity and other grid-connected renewable energy sources is expected to grow slowly over the next couple of decades, increasing at a rate of 2.5 percent per year until 2040, according to the Energy Information Administration (EIA)[v]. Most of that growth will come from the construction of new hydropower and wind generating facilities. The renewable share of total world energy consumption is expected to rise from 10.6 percent in 2009 to 14.5 percent in 2040[vi].

Markets for second-generation technologies are strong and growing, but only in a few countries. The challenge is to broaden the market base for continued growth worldwide. Strategic deployment in one country not only reduces technology costs for users there, but also for those in other countries, contributing to overall cost reductions and performance improvement.

As the primary source of biofuel in North America, many organizations are conducting research in the area of ethanol production. On the Federal level, the USDA conducts a large amount of research regarding ethanol production in the United States. Much of this research is targeted towards the effect of ethanol production on domestic food markets.[117] The National Renewable Energy Laboratory has conducted various ethanol research projects, mainly in the area of cellulosic ethanol.[118] Cellulosic ethanol has many benefits over traditional corn based-ethanol. It does not take away or directly conflict with the food supply because it is produced from wood, grasses, or non-edible parts of plants.[119] Moreover, some studies have shown cellulosic ethanol to be more cost effective and economically sustainable than corn-based ethanol.[120] Even if we used all the corn crop that we have in the United States and converted it into ethanol it would only produce enough fuel to serve 13 percent of the United States total gasoline consumption.[121]Sandia National Laboratories conducts in-house cellulosic ethanol research[122] and is also a member of the Joint BioEnergy Institute (JBEI), a research institute founded by the United States Department of Energy with the goal of developing cellulosic biofuels.[123]

The Sun may be used to heat water instead of electricity or gas. There are two basic types of active solar heating systems based on the type of fluid — either liquid or air — that is heated in the solar energy collectors. (The collector is the device in which a fluid is heated by the Sun.)

For example, Hurricane Sandy damaged fossil fuel-dominated electric generation and distribution systems in New York and New Jersey and left millions of people without power. In contrast, renewable energy projects in the Northeast weathered Hurricane Sandy with minimal damage or disruption [25]. 

Comments

  1. Molly

    The Japanese government through its Ministry of International Trade and Industry ran a successful programme of subsidies from 1994 to 2003. By the end of 2004, Japan led the world in installed PV capacity with over 1.1 GW.[82]
    There are several advantages of photovoltaic solar power that make it “one of the most promising renewable energy sources in the world.” It is non-polluting, has no moving parts that could break down, requires little maintenance and no supervision, and has a life of 20-30 years with low running costs. It is especially unique because no large-scale installation is required. Remote areas can easily produce their own supply of electricity by constructing as small or as large of a system as needed. Solar power generators are simply distributed to homes, schools, or businesses, where their assembly requires no extra development or land area and their function is safe and quiet. As communities grow, more solar energy capacity can be added, “thereby allowing power generation to keep in step with growing needs without having to overbuild generation capacity as is often the case with conventional large scale power systems.” Compare those characteristics to those of coal, oil, gas, or nuclear power, and the choice is easy. Solar energy technologies offer a clean, renewable and domestic energy source.
    Greenhouses convert solar light to heat, enabling year-round production and the growth (in enclosed environments) of specialty crops and other plants not naturally suited to the local climate. Primitive greenhouses were first used during Roman times to produce cucumbers year-round for the Roman emperor Tiberius.[77] The first modern greenhouses were built in Europe in the 16th century to keep exotic plants brought back from explorations abroad.[78] Greenhouses remain an important part of horticulture today, and plastic transparent materials have also been used to similar effect in polytunnels and row covers.
    Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources such as trees and grasses is also being developed as a feedstock for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the USA and in Brazil. Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe.

Leave a Reply

Your email address will not be published. Required fields are marked *