“solar energy diagram _pros and cons of solar energy wikipedia”

Several parabolic trough power plants in Spain[55] and solar power tower developer SolarReserve use this thermal energy storage concept. The Solana Generating Station in the U.S. has six hours of storage by molten salt. The María Elena plant[56] is a 400 MW thermo-solar complex in the northern Chilean region of Antofagasta employing molten salt technology.

Jump up ^ Weber suggests that the modern economic world will determine the lifestyle of everyone born into it “until the last hundredweight of fossil fuel is burned” (bis der letzte Zentner fossilen Brennstoffs verglüht ist).

The combination of wind and solar PV has the advantage that the two sources complement each other because the peak operating times for each system occur at different times of the day and year. The power generation of such solar hybrid power systems is therefore more constant and fluctuates less than each of the two component subsystems.[20] Solar power is seasonal, particularly in northern/southern climates, away from the equator, suggesting a need for long term seasonal storage in a medium such as hydrogen or pumped hydroelectric.[97] The Institute for Solar Energy Supply Technology of the University of Kassel pilot-tested a combined power plant linking solar, wind, biogas and hydrostorage to provide load-following power from renewable sources.[98]

Enhanced geothermal systems (EGS) are a new type of geothermal power technologies that do not require natural convective hydrothermal resources. The vast majority of geothermal energy within drilling reach is in dry and non-porous rock.[159] EGS technologies “enhance” and/or create geothermal resources in this “hot dry rock (HDR)” through hydraulic stimulation. EGS and HDR technologies, like hydrothermal geothermal, are expected to be baseload resources which produce power 24 hours a day like a fossil plant. Distinct from hydrothermal, HDR and EGS may be feasible anywhere in the world, depending on the economic limits of drill depth. Good locations are over deep granite covered by a thick (3–5 km) layer of insulating sediments which slow heat loss.[160] There are HDR and EGS systems currently being developed and tested in France, Australia, Japan, Germany, the U.S. and Switzerland. The largest EGS project in the world is a 25 megawatt demonstration plant currently being developed in the Cooper Basin, Australia. The Cooper Basin has the potential to generate 5,000–10,000 MW.

Due to the variable nature of renewable DER, there is a perception that customers will always need to remain on the grid. While we would expect customers to remain on the grid until a fully viable and economic distributed non-variable resource is available, one can imagine a day when battery storage technology or micro turbines could allow customers to be electric grid independent. To put this into perspective, who would have believed 10 years ago that traditional wire line telephone customers could economically “cut the cord?” [Emphasis mine.]

Commercial concentrating solar power (CSP) plants, also called “solar thermal power stations”, were first developed in the 1980s. The 377 MW Ivanpah Solar Power Facility, located in California’s Mojave Desert, is the world’s largest solar thermal power plant project. Other large CSP plants include the Solnova Solar Power Station (150 MW), the Andasol solar power station (150 MW), and Extresol Solar Power Station (150 MW), all in Spain. The principal advantage of CSP is the ability to efficiently add thermal storage, allowing the dispatching of electricity over up to a 24-hour period. Since peak electricity demand typically occurs at about 5 pm, many CSP power plants use 3 to 5 hours of thermal storage.[45]

In another farming town, in Ivory Coast, I talked to a man named Abou Traoré, who put his television out in a courtyard most nights, so that neighbors could come by to watch. He said that they tuned in for soccer matches—the village tilts Liverpool, but has a large pocket of Manchester United supporters. What else did he watch? Traoré considered. “I like the National Geographic channel,” he replied—that is, the broadcast arm of the institution that became famous showing Westerners pictures of remote parts of Africa.

According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world’s electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment. Cedric Philibert, senior analyst in the renewable energy division at the IEA said: “Photovoltaic and solar-thermal plants may meet most of the world’s demand for electricity by 2060 – and half of all energy needs – with wind, hydropower and biomass plants supplying much of the remaining generation”. “Photovoltaic and concentrated solar power together can become the major source of electricity”, Philibert said.[24]

A photovoltaic (PV) module is a packaged, connect assembly of typically 6×10 photovoltaic solar cells. Photovoltaic modules constitute the photovoltaic array of a photovoltaic system that generates and supplies solar electricity in commercial and residential applications.

Hydrogen production technologies have been a significant area of solar chemical research since the 1970s. Aside from electrolysis driven by photovoltaic or photochemical cells, several thermochemical processes have also been explored. One such route uses concentrators to split water into oxygen and hydrogen at high temperatures (2,300–2,600 °C or 4,200–4,700 °F).[98] Another approach uses the heat from solar concentrators to drive the steam reformation of natural gas thereby increasing the overall hydrogen yield compared to conventional reforming methods.[99] Thermochemical cycles characterized by the decomposition and regeneration of reactants present another avenue for hydrogen production. The Solzinc process under development at the Weizmann Institute of Science uses a 1 MW solar furnace to decompose zinc oxide (ZnO) at temperatures above 1,200 °C (2,200 °F). This initial reaction produces pure zinc, which can subsequently be reacted with water to produce hydrogen.[100]

In the United States, heating, ventilation and air conditioning (HVAC) systems account for 30% (4.65 EJ/yr) of the energy used in commercial buildings and nearly 50% (10.1 EJ/yr) of the energy used in residential buildings.[28][29] Solar heating, cooling and ventilation technologies can be used to offset a portion of this energy.

Savings based on SolarPPA and SolarLease customers with at least twelve months of billing data. Savings Rate calculated by subtracting PPA or equivalent lease kWh rate from relevant utility kWh rate. Savings calculated by multiplying actual kWh supplied by SolarCity in customers’ first year times Savings Rate. Excludes fully or partially prepaid contracts.

^ a b c Fridleifsson,, Ingvar B.; Bertani, Ruggero; Huenges, Ernst; Lund, John W.; Ragnarsson, Arni; Rybach, Ladislaus (11 February 2008). O. Hohmeyer and T. Trittin, ed. “The possible role and contribution of geothermal energy to the mitigation of climate change” (PDF). Luebeck, Germany: 59–80. Archived from the original (pdf) on 22 July 2011. Retrieved 6 April 2009.

There are a few big solar power plants in the United States, mostly in California. It’s difficult and expensive to make a lot of electricity using photovoltaics because the panels cost are expensive, and a lot of open land is needed.

Solar energy is also used on a small scale for purposes other than those described above. In some countries, for instance, specially designed solar ovens are employed for cooking, and solar energy is used to produce salt from seawater by evaporation.

In 2015, hydropower accounted for 2.39 quadrillion Btu of energy [vii], a figure the EIA expects to grow slightly through 2040[viii]. All other sources of renewable fuels accounted for 7.29 quadrillion Btu in 2015[ix] and are anticipated to increase to 9.71 quadrillion Btu by 2040[x]. The increase is due to the Federal Renewable Fuel Standard, mandating the use of ethanol in transportation fuels, state Renewable Portfolio Standards, mandating the use of renewable generating technologies in the electric sector of 30 states and the District of Columbia, the Emergency Economic Stabilization Act of 2008, and the American Recovery and Reinvestment Act of 2009 among other legislation. Of the 105.7 quadrillion Btu the U.S. is expected to consume in 2040[xi], renewable sources are projected to account for 12.52 quadrillion Btu, or 11.8 percent [xii].

2010 was a record year for green energy investments. According to a report from Bloomberg New Energy Finance, nearly US $243 billion was invested in wind farms, solar power, electric cars, and other alternative technologies worldwide, representing a 30 percent increase from 2009 and nearly five times the money invested in 2004. China had $51.1 billion investment in clean energy projects in 2010, by far the largest figure for any country.[148]

^ Lund, John W. (June 2007). “Characteristics, Development and utilization of geothermal resources” (PDF). Geo-Heat Centre Quarterly Bulletin. 28 (2). Klamath Falls, Oregon: Oregon Institute of Technology. pp. 1–9. ISSN 0276-1084. Retrieved 16 April 2009.

The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. Charles Fritts installed the world’s first rooftop photovoltaic solar array, using 1%-efficient selenium cells, on a New York City roof in 1884.[26] However, development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum.[27] In 1974 it was estimated that only six private homes in all of North America were entirely heated or cooled by functional solar power systems.[28] The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies.[29][30] Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the United States (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer–ISE).[31] Between 1970 and 1983 installations of photovoltaic systems grew rapidly, but falling oil prices in the early 1980s moderated the growth of photovoltaics from 1984 to 1996.

You might be wondering why we don’t use solar electricity all the time. Solar power systems make a different kind of electricity than big power plants do, so different wiring is needed and that can be expensive.

At the end of 2014, worldwide PV capacity reached at least 177,000 megawatts. Photovoltaics grew fastest in China, followed by Japan and the United States, while Germany remains the world’s largest overall producer of photovoltaic power, contributing about 7.0 percent to the overall electricity generation. Italy meets 7.9 percent of its electricity demands with photovoltaic power—the highest share worldwide.[117] For 2015, global cumulative capacity is forecasted to increase by more than 50 gigawatts (GW). By 2018, worldwide capacity is projected to reach as much as 430 gigawatts. This corresponds to a tripling within five years.[118] Solar power is forecasted to become the world’s largest source of electricity by 2050, with solar photovoltaics and concentrated solar power contributing 16% and 11%, respectively. This requires an increase of installed PV capacity to 4,600 GW, of which more than half is expected to be deployed in China and India.[119]

“In their assumptions, the amount of capacity they give to the solar is way, way undercut because they have to say, ‘What if it’s cloudy? What if the wind is not blowing?’ ” Firooz explained. “That’s how the game is played. You build these scenarios so that it basically justifies what you want.”

Go-anywhere rechargeable battery pack keeps your handheld gear Go-anywhere renewable energy battery pack keeps your handheld gear going strong. Charge AA/AAA batteries from the sun or any USB port then power your phone MP3 GPS or perk up your tablet in a pinch. Kit included Nomad 7m v2 Solar Panel and Guide 10 Plus power pack. This ultra-lightweight kit …  More + Product Details Close

Real world energy production costs depend a great deal on local weather conditions. In a cloudy country such as the United Kingdom, the cost per produced kWh is higher than in sunnier countries like Spain.

Over $1 billion of federal money has been spent on the research and development of hydrogen fuel in the United States.[83] Both the National Renewable Energy Laboratory[84] and Sandia National Laboratories[85] have departments dedicated to hydrogen research.

Regarding energy used by vehicles, a comprehensive 2008 cost-benefit analysis review was conducted of sustainable energy sources and usage combinations in the context of global warming and other dominating issues; it ranked wind power generation combined with battery electric vehicles (BEV) and hydrogen fuel cell vehicles (HFCVs) as the most efficient. Wind was followed by concentrated solar power (CSP), geothermal power, tidal power, photovoltaic, wave power, hydropower coal capture and storage (CCS), nuclear energy and biofuel energy sources. It states: “In sum, use of wind, CSP, geothermal, tidal, PV, wave, and hydro to provide electricity for BEVs and HFCVs and, by extension, electricity for the residential, industrial, and commercial sectors, will result in the most benefit among the options considered. The combination of these technologies should be advanced as a solution to global warming, air pollution, and energy security. Coal-CCS and nuclear offer less benefit thus represent an opportunity cost loss, and the biofuel options provide no certain benefit and the greatest negative impacts.”[11]

^ B.N. Divakara, H.D. Upadhyaya, S.P. Wani, C.L. Laxmipathi Gowda; Upadhyaya; Wani; Gowda (2010). “Biology and genetic improvement of Jatropha curcas L.: A review”. Applied Energy. 87 (3): 732–742. doi:10.1016/j.apenergy.2009.07.013.

Comments

  1. Molly Moran

    Module electrical connections are made in series to achieve a desired output voltage or in parallel to provide a desired current capability. The conducting wires that take the current off the modules may contain silver, copper or other non-magnetic conductive transition metals. Bypass diodes may be incorporated or used externally, in case of partial module shading, to maximize the output of module sections still illuminated.
    Solar energy is a flexible energy technology: solar power plants can be built as distributed generation (located at or near the point of use) or as a central-station, utility-scale solar power plant (similar to traditional power plants). Some utility-scale solar plants can store the energy they produce for use after the sun sets. 
    Concentrated solar power plants may use thermal storage to store solar energy, such as in high-temperature molten salts. These salts are an effective storage medium because they are low-cost, have a high specific heat capacity, and can deliver heat at temperatures compatible with conventional power systems. This method of energy storage is used, for example, by the Solar Two power station, allowing it to store 1.44 TJ in its 68 m³ storage tank, enough to provide full output for close to 39 hours, with an efficiency of about 99%.[90]
    The potential solar energy that could be used by humans differs from the amount of solar energy present near the surface of the planet because factors such as geography, time variation, cloud cover, and the land available to humans limit the amount of solar energy that we can acquire.

Leave a Reply

Your email address will not be published. Required fields are marked *