Japan and China have national programs aimed at commercial scale Space-Based Solar Power (SBSP). The China Academy of Space Technology (CAST) won the 2015 International SunSat Design Competition with this video of their Multi-Rotary Joint design. Proponents of SBSP claim that Space-Based Solar Power would be clean, constant, and global, and could scale to meet all planetary energy demand.[56] A recent multi-agency industry proposal (echoing the 2008 Pentagon recommendation) won the SECDEF/SECSTATE/USAID Director D3 (Diplomacy, Development, Defense) Innovation Challenge.[57]
Cleaner air and water: Burning fossil fuels releases greenhouse gases (GHG) into the atmosphere. GHG contribute to global climate change, rising sea levels and unpredictable weather patterns that can be costly in terms of human and economic losses. Burning fossil fuels also releases contaminants in to the air and water near the power generation source. Alternative energy sources can produce the same electricity in a greener way. You can shrink your carbon footprint, help curb climate change and reduce air and water pollution when you choose renewable electricity.
I ask Gore about the lessons he takes from Georgetown. “I think it’s important to pay attention to a CPA who becomes a mayor and takes an objective look at how he can save money for the citizens of his community, even if it means ignoring ideological presuppositions about fossil energy. Especially when the mayor in question is in the heart of oil and gas country.”
As of 2014, offshore wind power amounted to 8,771 megawatt of global installed capacity. Although offshore capacity doubled within three years (from 4,117 MW in 2011), it accounted for only 2.3% of the total wind power capacity. The United Kingdom is the undisputed leader of offshore power with half of the world's installed capacity ahead of Denmark, Germany, Belgium and China.

Our latest innovation in the Industrial Internet era, The Digital Wind Farm, is making our turbines smarter and more connected than ever before. A dynamic, connected and adaptable wind energy ecosystem, the Digital Wind Farm pairs our newest turbines with a digital infrastructure, allowing customers to connect, monitor, predict and optimize unit and site performance.

There are more specific questions you’ll have to ask yourself about your location and home—e.g., is my next-door neighbor’s oak tree going to block all my sunlight? You’ll also have to take local weather conditions into consideration. Luckily, there are plenty of other resources to help you find your solar potential. See our Tools section for more info.


Electricity produced by wind generators can be used directly, as in water pumping applications, or it can be stored in batteries for later use. Wind generators can be used alone, or they may be used as part of a hybrid system, in which their output is combined with that of solar panels, and /or a fossil fuel generator. Hybrid systems are especially useful for winter backup of home systems where cloudy weather and windy conditions occur simultaneously.
Cleaner air and water: Burning fossil fuels releases greenhouse gases (GHG) into the atmosphere. GHG contribute to global climate change, rising sea levels and unpredictable weather patterns that can be costly in terms of human and economic losses. Burning fossil fuels also releases contaminants in to the air and water near the power generation source. Alternative energy sources can produce the same electricity in a greener way. You can shrink your carbon footprint, help curb climate change and reduce air and water pollution when you choose renewable electricity.
Going forward, there is hope for the small wind future! Certification programs are under way in various places to provide real turbine performance data. In North America this is being spearheaded by the Small Wind Certification Council, which requires third-party certification of turbine performance in a standardized fashion. Manufacturers will no longer be able to fudge power curves, or specify ‘rated power’ at hurricane-force wind speeds. This will allow you, the consumer, to compare turbines on a much more even footing.
Using 100% renewable energy was first suggested in a Science paper published in 1975 by Danish physicist Bent Sørensen.[150] It was followed by several other proposals, until in 1998 the first detailed analysis of scenarios with very high shares of renewables were published. These were followed by the first detailed 100% scenarios. In 2006 a PhD thesis was published by Czisch in which it was shown that in a 100% renewable scenario energy supply could match demand in every hour of the year in Europe and North Africa. In the same year Danish Energy professor Henrik Lund published a first paper[151] in which he addresses the optimal combination of renewables, which was followed by several other papers on the transition to 100% renewable energy in Denmark. Since then Lund has been publishing several papers on 100% renewable energy. After 2009 publications began to rise steeply, covering 100% scenarios for countries in Europe, America, Australia and other parts of the world.[152]
A study of the material consumption trends and requirements for wind energy in Europe found that bigger turbines have a higher consumption of precious metals but lower material input per kW generated. The current material consumption and stock was compared to input materials for various onshore system sizes. In all EU countries the estimates for 2020 exceeded and doubled the values consumed in 2009. These countries would need to expand their resources to be able to meet the estimated demand for 2020. For example, currently the EU has 3% of world supply of fluorspar and it requires 14% by 2020. Globally, the main exporting countries are South Africa, Mexico and China. This is similar with other critical and valuable materials required for energy systems such as magnesium, silver and indium. In addition, the levels of recycling of these materials is very low and focusing on that could alleviate issues with supply in the future. It is important to note that since most of these valuable materials are also used in other emerging technologies, like LEDs, PVs and LCDs, it is projected that demand for them will continue to increase.[53]
Wind energy research dates back several decades to the 1970s when NASA developed an analytical model to predict wind turbine power generation during high winds.[136] Today, both Sandia National Laboratories and National Renewable Energy Laboratory have programs dedicated to wind research. Sandia’s laboratory focuses on the advancement of materials, aerodynamics, and sensors.[137] The NREL wind projects are centered on improving wind plant power production, reducing their capital costs, and making wind energy more cost effective overall.[138] The Field Laboratory for Optimized Wind Energy (FLOWE) at Caltech was established to research renewable approaches to wind energy farming technology practices that have the potential to reduce the cost, size, and environmental impact of wind energy production.[139] The president of Sky WindPower Corporation thinks that wind turbines will be able to produce electricity at a cent/kWh at an average which in comparison to coal-generated electricity is a fractional of the cost.[140]

The W03083 Firman generator is perfect in and The W03083 Firman generator is perfect in and around the RV on the campsite while powering small appliances or while at home. Its Fuel Economy Mode reduces fuel consumption and promotes engine efficiency. It uses an OHV electric start engine (Max-Pro Series) for longer life higher performance and lower maintenance. ...  More + Product Details Close
U.S. President Barack Obama's American Recovery and Reinvestment Act of 2009 includes more than $70 billion in direct spending and tax credits for clean energy and associated transportation programs. Leading renewable energy companies include First Solar, Gamesa, GE Energy, Hanwha Q Cells, Sharp Solar, Siemens, SunOpta, Suntech Power, and Vestas.[142]
The Nomad 20 Solar Panel combines highly efficient The Nomad 20 Solar Panel combines highly efficient monocrystalline technology in a foldable portable plug-and-play form. With a built-in junction box and innovative smart chip the Nomad 20 can directly charge handheld USB and 12-Volt devices directly from the sun just as fast as the wall. Combine the Nomad 20 ...  More + Product Details Close
Commercial concentrating solar power (CSP) plants, also called "solar thermal power stations", were first developed in the 1980s. The 377 MW Ivanpah Solar Power Facility, located in California's Mojave Desert, is the world’s largest solar thermal power plant project. Other large CSP plants include the Solnova Solar Power Station (150 MW), the Andasol solar power station (150 MW), and Extresol Solar Power Station (150 MW), all in Spain. The principal advantage of CSP is the ability to efficiently add thermal storage, allowing the dispatching of electricity over up to a 24-hour period. Since peak electricity demand typically occurs at about 5 pm, many CSP power plants use 3 to 5 hours of thermal storage.[65]
The energy number that is left over should be a good approximation of what you can expect from that VAWT. Compare the resulting numbers with those mentioned in just about all sales brochures of VAWT type turbines and it should be immediately clear that their marketing people are smoking The Good Stuff. There is no relation to physical reality in their numbers, they are consistently much too high. Keep in mind that the energy production numbers calculated here are ‘best case’; for a turbine in nice, smooth air. Most VAWTs are placed very close to the ground, or on buildings, where there is little wind and lots of turbulence. Under those conditions they will do much, much worse than predicted.
The Sunforce 44444 400 Watt Wind Generator uses wind to generate power and run your appliances and electronics. Constructed from lightweight, weatherproof cast aluminum, this generator is also a great choice for powering pumps or charging batteries for large power demands. With a maximum power up to 400 watts or 27 amps, this device features a fully integrated regulator that automatically shuts down when the batteries are completely charged. The 44444 is virtually maintenance free with only two moving parts, and the carbon fiber composite blades ensure low wind noise while the patented high wind over speed technology guarantees a smooth, clean charge. Assembly is required, but this generator installs easily and mounts to any sturdy pole, building, or the Sunforce 44455 Wind Generator 30-Foot Tower Kit. The 44444 uses a 12-volt battery (not included) and measures 27 x 44 x 44 inches (LxWxH)
Anaerobic digestion, geothermal power, wind power, small-scale hydropower, solar energy, biomass power, tidal power, wave power, and some forms of nuclear power (ones which are able to "burn" nuclear waste through a process known as nuclear transmutation, such as an Integral Fast Reactor, and therefore belong in the "Green Energy" category). Some definitions may also include power derived from the incineration of waste.
In 2006 California approved the 'California Solar Initiative', offering a choice of investment subsidies or FIT for small and medium systems and a FIT for large systems. The small-system FIT of $0.39 per kWh (far less than EU countries) expires in just 5 years, and the alternate "EPBB" residential investment incentive is modest, averaging perhaps 20% of cost. All California incentives are scheduled to decrease in the future depending as a function of the amount of PV capacity installed.
The International Geothermal Association (IGA) has reported that 10,715 MW of geothermal power in 24 countries is online, which is expected to generate 67,246 GWh of electricity in 2010.[131] This represents a 20% increase in geothermal power online capacity since 2005. IGA projects this will grow to 18,500 MW by 2015, due to the large number of projects presently under consideration, often in areas previously assumed to have little exploitable resource.[131]
Most current solar power plants are made from an array of similar units where each unit is continuously adjusted, e.g., with some step motors, so that the light converter stays in focus of the sun light. The cost of focusing light on converters such as high-power solar panels, Stirling engine, etc. can be dramatically decreased with a simple and efficient rope mechanics.[55] In this technique many units are connected with a network of ropes so that pulling two or three ropes is sufficient to keep all light converters simultaneously in focus as the direction of the sun changes.
At the end of 2006, the Ontario Power Authority (OPA, Canada) began its Standard Offer Program, a precursor to the Green Energy Act, and the first in North America for distributed renewable projects of less than 10 MW. The feed-in tariff guaranteed a fixed price of $0.42 CDN per kWh over a period of twenty years. Unlike net metering, all the electricity produced was sold to the OPA at the given rate.
Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass.[65] As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Wood remains the largest biomass energy source today;[66] examples include forest residues – such as dead trees, branches and tree stumps –, yard clippings, wood chips and even municipal solid waste. In the second sense, biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including biofuels. Industrial biomass can be grown from numerous types of plants, including miscanthus, switchgrass, hemp, corn, poplar, willow, sorghum, sugarcane, bamboo,[67] and a variety of tree species, ranging from eucalyptus to oil palm (palm oil).
As suppliers of inverters for turbines good, bad, and just plain ugly, we have pretty well seen it all when it comes to turbine failure. We can tell you unequivocally that you get what you pay for. Depending on your sense of adventure that can be good or bad; if you plan to go cheap, plan on (you) being the manufacturer’s R&D department and test center. Being a really good do-it-yourselfer with an understanding of wind turbines, alternators, and all things electric will come in very handy too. Just in case you do not believe us, you can read about it in this Green Power Talk thread. There are more threads with similar content on the forum, just browse around a little.
Between maintenance and repairs, it would greatly help and keep your cost down if you can do some of the work yourself: Being able to safely tilt the turbine tower up or down will save you money. Understanding how the turbine works, how to stop it safely, how to trouble-shoot at least the minor issues can keep you in the black. We understand that installing a wind turbine is not for everyone. In fact, towers are dangerous, and for a good installation the devil is in the details. An experienced installer can make a real difference in putting up a turbine that will work better, and be more reliable over time. We really encourage you to have a professional installer to do the initial installation. However, throwing up your hands and calling your installer for routine maintenance, or every time there is a minor issue, will likely make you an unhappy wind turbine owner (even if it is your installer’s dream).
Since having the Peimar Solar Panels installed and listening to the advice of the owner I have saved a lot of money on my electric bill. Texas Solar Integrated did the work as quickly and efficiently as promised. If the panels look dirty, since I live around cement plants, I just get my high pressure water hose and spray them off. Thank you to this company and the installers. The owner or another contractor in the office is always ready to answer your questions before and after installation.... read more

The 1500W wind turbine is our most high powered wind turbine, made specifically for off-grid residential use in mind. Its DIY set-up instructions and with all the materials needed provided for, you will be able to set the wind turbine up in no time at all. The 1500W wind turbine is durable, low maintenance and the most powerful wind turbine in our line up of wind turbine having weighing at only 33 lbs. Coated with special high weather tolerant protection spray to protect the wind turbine from the elements such as rain. It is a completely self-sustaining stand-alone device that will continuously generates 100% clean GREEN renewable energy, without you being present or around it.
 ★【Excellence Performance】Wind Turbine, Nylon fiber blades,rated power:600W ★【Scientific Design】Using reinforced fiberglass on wind wheel blades and the aerodynamic lantern shape design, the coefficient of wind energy utilisation is increased, so as increased annual electricity generation capacity. ★【Low Noise】Low start up wind speed, high efficiency, small size, low vibration ★【Premium Material】The shell is made of aluminum alloy die-casting, with double bearing carrier, anti-typhoon capacity is stronger, safe and reliable operation. Easy installation, low maintenance.

There is one more area where buyers may get a false sense of security: Several states in the US have lists of “approved” wind turbines for their rebate programs. An example of this is the California list. The problem is that approval for this list, and the performance data provided (such as rated power and energy production) are essentially self-certified. The less-scrupulous manufacturers can ‘manufacture’ data and submit it under the pretence that it was measured.  The only value of those lists is in telling you what rebates are available, they do not provide reliable turbine information.

The political purpose of incentive policies for PV is to facilitate an initial small-scale deployment to begin to grow the industry, even where the cost of PV is significantly above grid parity, to allow the industry to achieve the economies of scale necessary to reach grid parity. The policies are implemented to promote national energy independence, high tech job creation and reduction of CO2 emissions. Three incentive mechanisms are often used in combination as investment subsidies: the authorities refund part of the cost of installation of the system, the electricity utility buys PV electricity from the producer under a multiyear contract at a guaranteed rate, and Solar Renewable Energy Certificates (SRECs)
Climate change and global warming concerns, coupled with high oil prices, peak oil, and increasing government support, are driving increasing renewable energy legislation, incentives and commercialization.[10] New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors.[24] According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment.[25]
It is possible to use any type of solar thermal panel (sheet and tubes, roll-bond, heat pipe, thermal plates) or hybrid (mono/polycrystalline, thin film) in combination with the heat pump. The use of a hybrid panel is preferable because it allows covering a part of the electricity demand of the heat pump and reduce the power consumption and consequently the variable costs of the system.

If you want to purchase a rooftop solar system for your home, federal tax credits and other state, local, or utility incentives can offset some of the upfront cost. There are also several financing options available for homeowners, including energy-saving mortgages, home equity, Property Assessed Clean Energy Loans, and more traditional bank loans.
Renewable energy is energy that is collected from renewable resources, which are naturally replenished on a human timescale, such as sunlight, wind, rain, tides, waves, and geothermal heat.[3] Renewable energy often provides energy in four important areas: electricity generation, air and water heating/cooling, transportation, and rural (off-grid) energy services.[4]
Which is to say that Ross and his co-workers had options. And the city was free to take advantage of them because of a rather unusual arrangement: Georgetown itself owns the utility company that serves the city. So officials there, unlike those in most cities, were free to negotiate with suppliers. When they learned that rates for wind power could be guaranteed for 20 years and solar for 25 years, but natural gas for only seven years, the choice, Ross says, was a “no-brainer.”

With Georgetown emerging as a brave new model for a renewable city, it makes sense to ask if others can achieve the same magical balance of more power, less pollution and lower costs. In fact, cities ranging from Orlando to St. Louis to San Francisco to Portland, Oregon, have pledged to run entirely on renewable energy. Those places are much larger than Georgetown, of course, and no one would expect misty Portland to power a light bulb for long with solar energy, which is crucial to Georgetown’s success. But beyond its modest size, abundant sunshine and archetype-busting mayor, Georgetown has another edge, one that’s connected to a cherished Lone Star ideal: freedom.


This discussion is mainly about factory-made grid-tie wind turbines. The off-grid crowd has an entirely different set of decisions and goals. The main ones are that for off-grid use economic viability in comparison with the electrical grid is not an issue, and a wind turbine can make up for the loss of sunlight (and PV electricity) in the winter months. For the DIY group there are several good turbine designs available; Hugh Piggott and the two Dans have written books that outline this step-by-step. Building your own turbine can be a great hobby, and some of the topics touched below apply (such as proper site selection), but this discussion is not about those. The decisions involved in making your own turbine, and the cost basis, have little overlap with a the process of having an installer put a factory-made turbine in your backyard.

Compact Linear Fresnel Reflectors are CSP-plants which use many thin mirror strips instead of parabolic mirrors to concentrate sunlight onto two tubes with working fluid. This has the advantage that flat mirrors can be used which are much cheaper than parabolic mirrors, and that more reflectors can be placed in the same amount of space, allowing more of the available sunlight to be used. Concentrating linear fresnel reflectors can be used in either large or more compact plants.[16][17]

×