"Eggbeater" turbines, or Darrieus turbines, were named after the French inventor, Georges Darrieus.[31] They have good efficiency, but produce large torque ripple and cyclical stress on the tower, which contributes to poor reliability. They also generally require some external power source, or an additional Savonius rotor to start turning, because the starting torque is very low. The torque ripple is reduced by using three or more blades which results in greater solidity of the rotor. Solidity is measured by blade area divided by the rotor area. Newer Darrieus type turbines are not held up by guy-wires but have an external superstructure connected to the top bearing.[32]

Large national and regional research projects on artificial photosynthesis are designing nanotechnology-based systems that use solar energy to split water into hydrogen fuel.[52] and a proposal has been made for a Global Artificial Photosynthesis project[53] In 2011, researchers at the Massachusetts Institute of Technology (MIT) developed what they are calling an "Artificial Leaf", which is capable of splitting water into hydrogen and oxygen directly from solar power when dropped into a glass of water. One side of the "Artificial Leaf" produces bubbles of hydrogen, while the other side produces bubbles of oxygen.[54]


While many renewable energy projects are large-scale, renewable technologies are also suited to rural and remote areas and developing countries, where energy is often crucial in human development.[13] Former United Nations Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity.[14] As most of renewables provide electricity, renewable energy deployment is often applied in conjunction with further electrification, which has several benefits: Electricity can be converted to heat (where necessary generating higher temperatures than fossil fuels), can be converted into mechanical energy with high efficiency and is clean at the point of consumption.[15][16] In addition to that electrification with renewable energy is much more efficient and therefore leads to a significant reduction in primary energy requirements, because most renewables don't have a steam cycle with high losses (fossil power plants usually have losses of 40 to 65%).[17]
Solar electricity is inherently variable and predictable by time of day, location, and seasons. In addition solar is intermittent due to day/night cycles and unpredictable weather. How much of a special challenge solar power is in any given electric utility varies significantly. In a summer peak utility, solar is well matched to daytime cooling demands. In winter peak utilities, solar displaces other forms of generation, reducing their capacity factors.
Renewable electricity production, from sources such as wind power and solar power, is sometimes criticized for being variable or intermittent, but is not true for concentrated solar, geothermal and biofuels, that have continuity. In any case, the International Energy Agency has stated that deployment of renewable technologies usually increases the diversity of electricity sources and, through local generation, contributes to the flexibility of the system and its resistance to central shocks.[191]

It is hard to beat the advantages of solar: No moving parts. Warranties of 25 years are common for PV modules. No maintenance, other than the occasional hosing-off if you live in a dusty place. The installed price of a 6 kW wind turbine on a good height tower is about $50,000 (and we are not even counting the money you are going to sink into maintenance of that wind turbine). At the time of this writing, half that money will buy you about 7 kW of installed solar panels. In our not-so-sunny Ottawa location those solar modules will produce around 8,000 kWh of electrical energy per average year, and they will do that for 30 years or more.
The Sunforce 44444 400 Watt Wind Generator uses wind to generate power and run your appliances and electronics. Constructed from lightweight, weatherproof cast aluminum, this generator is also a great choice for powering pumps or charging batteries for large power demands. With a maximum power up to 400 watts or 27 amps, this device features a fully integrated regulator that automatically shuts down when the batteries are completely charged. The 44444 is virtually maintenance free with only two moving parts, and the carbon fiber composite blades ensure low wind noise while the patented high wind over speed technology guarantees a smooth, clean charge. Assembly is required, but this generator installs easily and mounts to any sturdy pole, building, or the Sunforce 44455 Wind Generator 30-Foot Tower Kit. The 44444 uses a 12-volt battery (not included) and measures 27 x 44 x 44 inches (LxWxH)
What is a small wind turbine? Anything under, say, 10 meters rotor diameter (30 feet) is well within the “small wind” category. That works out to wind turbines with a rated power up to around 20 kW (at 11 m/s, or 25 mph). For larger wind turbines the manufacturers are usually a little more honest, and more money is available to do a good site analysis. The information in this article is generic: The same applies to all the other brands and models, be they of the HAWT (Horizontal Axis Wind Turbine) or VAWT (Vertical Axis Wind Turbine) persuasion.
Within emerging economies, Brazil comes second to China in terms of clean energy investments. Supported by strong energy policies, Brazil has one of the world’s highest biomass and small-hydro power capacities and is poised for significant growth in wind energy investment. The cumulative investment potential in Brazil from 2010 to 2020 is projected as $67 billion.[155]
The most common type of residential solar is called solar PV. The PV stands for “photovoltaic,” and a solar PV system is a electrical system that consists of solar panels, an inverter, a meter, and a few other components (mounting, cabling, etc.). A solar PV system requires little to no maintenance for years, and if you’re in a place with the right amount of sunlight, you can end up saving money, while also going green.
Kits (3) Wind Turbine Products (91)    - Wind Turbines (14)    - Primus Wind Turbines (2)    - SkyMAX Wind™ Turbines (1)    - Wind Turbine Blades (16)    - Wind Turbine Hubs & Hub Adapters (7)    - Wind Turbine PMAs & PMGs (20)    - Wind Turbine Tails (2)    - Brake Switches (5)    - Diversion Dump Load Resistors (8)    - Wind Turbine Hardware (18) Hydro Products (6)    - Freedom & Freedom II Hydroelectric PMGs (2)    - Hydro Parts & Accessories (4) Solar Products (71)    - Solar Panels (9)    - Solar Panel Kits (3)    - Solar Charge Controllers (35)    - Solar Panel Mounting (23) Charge Controllers (79)    - Wind Turbine Charge Controllers (1)    - MidNite Classic MPPT Charge Controllers (13)    - Solar Charge Controllers (35)    - Wind & Solar Hybrid Charge Controllers (34)    - SkyMAX Wind Hybrid Charge Controllers (1) Power Without Batteries (3) Power Inverters (134)    - Micro Inverters (4)    - Transfer Switches (1)    - UL Certified DC to AC Power Inverters (12)    - Grid Tie Feed Inverters (28)    - Low Frequency Inverter Chargers (41)    - Modified Sine Power Inverters (28)    - Pure Sine Wave Inverters (24)    - Inverter Cables (16)    - 220 Volt 50 Hz Inverters (2)    - Power Inverter Remotes (7) Cable & Electrical Components (130)    - Disconnect Switches (4)    - Steel Enclosures (3)    - Cable, Terminals, & Connectors (69)    - Fuses & Breakers (23)    - Surge Protection (2)    - 3 Phase Rectifiers (9)    - Blocking Diodes (7) Renewable Energy Appliances (16)    - Solar DC Powered Chest Freezers (7)    - DC Ceiling Fans (1)    - LED Lights (2)    - Other (6) DC and AC Meters (23)    - Amp Meters (12)    - Volt Meters (9)    - Watt Meters (2) DC Water Heater Elements (6) Pond Aeration (26)    - Aeration Kits (10)    - Air Pumps (7)    - Hoses & Accessories (10) DC to DC Step Down Converters (7) Batteries (29)    - Flooded Lead Acid Batteries (5)    - Lithium Ion Batteries (2)    - Sealed AGM Batteries (4)    - Battery Accessories (11)    - Battery Desulfators and Chargers (7)
Green Energy Corp’s™ Microgrid as a Service (MaaS) package is a cloud based, subscription service enabling third party developers to utilize GreenBus® and Green Energy Corp expertise in financing, building and deploying microgrids. Included in the MaaS package is the microgrid toolset comprised of software, design and engineering packages, equipment recommendations, construction methods, operations and maintenance support, and financial instruments all delivered from a hosted environment.
Reliance on rare earth minerals for components has risked expense and price volatility as China has been main producer of rare earth minerals (96% in 2009) and had been reducing its export quotas of these materials.[56] In recent years, however, other producers have increased production of rare earth minerals and China has removed its reduced export quota on rare earths leading to an increased supply and decreased cost of rare earth minerals, increasing the viability of the implementation of variable speed generators in wind turbines on a large scale.[57]
Solar panel installation by NABCEP certified Corpus Christi solar installers is important for both safety and long term performance of your solar power installation.  Whether your solar panels are for your home or commercial installation, and will be connected to the grid through net metering, or completely off the grid, employing local Corpus Christi solar panel installation experts will ensure your satisfaction and provide for quick follow-up and maintenance.  Fill out our Corpus Christi solar panel installation form and we will have an approved, licensed solar panel installer from Corpus Christi contact you within hours. 
Moving towards energy sustainability will require changes not only in the way energy is supplied, but in the way it is used, and reducing the amount of energy required to deliver various goods or services is essential. Opportunities for improvement on the demand side of the energy equation are as rich and diverse as those on the supply side, and often offer significant economic benefits.[60]
There have been "not in my back yard" (NIMBY) concerns relating to the visual and other impacts of some wind farms, with local residents sometimes fighting or blocking construction.[192] In the United States, the Massachusetts Cape Wind project was delayed for years partly because of aesthetic concerns. However, residents in other areas have been more positive. According to a town councilor, the overwhelming majority of locals believe that the Ardrossan Wind Farm in Scotland has enhanced the area.[193]
Wind turbines need wind to produce energy. That message seems lost, not only on most small wind turbine owners, but also on many manufacturers and installers of said devices. One of the world’s largest manufacturers of small wind turbines, located in the USA (now bankrupt by the way, though their turbines are still sold), markets their flag-ship machine with a 12 meter (36 feet) tower. Their dealers are trained to tell you it will produce 60% of your electricity bill. If you are one of those that is convinced the earth is flat, this is the turbine for you!
If you can turn a wrench and operate an electric drill, you can build this simple generator in two days: one day for chasing down parts, and one day for assembling the components. The four major components include a vehicle alternator with a built-in voltage regulator, a General Motors (GM) fan and clutch assembly (I used one from a 1988 GM 350 motor), a tower or pole on which to mount the generator (15 feet of used 2-inch tubing cost me $20), and the metal to build a bracket for mounting the generator on the tower or pole. If you’re a Ford guy or a Mopar gal, that’s fine — just make sure your alternator has a built-in voltage regulator. You’ll also need some electrical cable or wires to hook the alternator up to your storage batteries. I used 8-gauge, 3-conductor cable pilfered from the oil patch. (And they said the transition from fossil fuels to renewables would take years. Pfft!)
A typical house usually requires a home wind turbine with a 5 kW generating capacity to meet all its energy requirements. A turbine that offers this much power would have to be around 13 to 18 feet in diameter and positioned in an area where strong winds often pass through. There are also plenty of smaller, cheaper turbines, but these variants produce less power and are less reliable than their more expensive counterparts.

Solar and wind are Intermittent energy sources that supply electricity 10-40% of the time. To compensate for this characteristic, it is common to pair their production with already existing hydroelectricity or natural gas generation. In regions where this isn't available, wind and solar can be paired with significantly more expensive pumped-storage hydroelectricity.
A 2014-published life-cycle analysis of land use for various sources of electricity concluded that the large-scale implementation of solar and wind potentially reduces pollution-related environmental impacts. The study found that the land-use footprint, given in square meter-years per megawatt-hour (m2a/MWh), was lowest for wind, natural gas and rooftop PV, with 0.26, 0.49 and 0.59, respectively, and followed by utility-scale solar PV with 7.9. For CSP, the footprint was 9 and 14, using parabolic troughs and solar towers, respectively. The largest footprint had coal-fired power plants with 18 m2a/MWh.[146]
Jump up ^ Faunce, T. A.; Lubitz, W.; Rutherford, A. W. (Bill); MacFarlane, D.; Moore, G. F.; Yang, P.; Nocera, D. G; Moore, Tom A; Gregory, Duncan H; Fukuzumi, Shunichi; Yoon, Kyung B.; Armstrong, F. A.; Wasielewski, M. R.; Styring, S. (2013), "Energy and environment policy case for a global project on artificial photosynthesis", Energy & Environmental Science, 6 (3): 695–698, doi:10.1039/C3EE00063J, archived from the original on 16 August 2013
Then the faster the coil of wire rotates, the greater the rate of change by which the magnetic flux is cut by the coil and the greater is the induced emf within the coil. Similarly, if the magnetic field is made stronger, the induced emf will increase for the same rotational speed. Thus: emf ∝ Φn. Where: “Φ” is the magnetic-field flux and “n” is the speed of rotation. Also, the polarity of the generated voltage depends on the direction of the magnetic lines of flux and the direction of movement of the conductor.
There have been "not in my back yard" (NIMBY) concerns relating to the visual and other impacts of some wind farms, with local residents sometimes fighting or blocking construction.[192] In the United States, the Massachusetts Cape Wind project was delayed for years partly because of aesthetic concerns. However, residents in other areas have been more positive. According to a town councilor, the overwhelming majority of locals believe that the Ardrossan Wind Farm in Scotland has enhanced the area.[193]
For either photovoltaic or thermal systems, one option is to loft them into space, particularly Geosynchronous orbit. To be competitive with Earth-based solar power systems, the specific mass (kg/kW) times the cost to loft mass plus the cost of the parts needs to be $2400 or less. I.e., for a parts cost plus rectenna of $1100/kW, the product of the $/kg and kg/kW must be $1300/kW or less.[190] Thus for 6.5 kg/kW, the transport cost cannot exceed $200/kg. While that will require a 100 to one reduction, SpaceX is targeting a ten to one reduction, Reaction Engines may make a 100 to one reduction possible.

Above this rated speed, the wind loads on the rotor blades will be approaching the maximum strength of the electrical machine, and the generator will be producing its maximum or rated power output as the rated wind speed window will have been reached. If the wind speed continues to increase, the wind turbine generator would stop at its cut-out point to prevent mechanical and electrical damage, resulting in zero electrical generation. The application of a brake to stop the generator for damaging itself can be either a mechanical governor or electrical speed sensor.
In the United States, one of the main problems with purchasing green energy through the electrical grid is the current centralized infrastructure that supplies the consumer’s electricity. This infrastructure has led to increasingly frequent brown outs and black outs, high CO2 emissions, higher energy costs, and power quality issues.[89] An additional $450 billion will be invested to expand this fledgling system over the next 20 years to meet increasing demand.[90] In addition, this centralized system is now being further overtaxed with the incorporation of renewable energies such as wind, solar, and geothermal energies. Renewable resources, due to the amount of space they require, are often located in remote areas where there is a lower energy demand. The current infrastructure would make transporting this energy to high demand areas, such as urban centers, highly inefficient and in some cases impossible. In addition, despite the amount of renewable energy produced or the economic viability of such technologies only about 20 percent will be able to be incorporated into the grid. To have a more sustainable energy profile, the United States must move towards implementing changes to the electrical grid that will accommodate a mixed-fuel economy.[91]

Which is to say that Ross and his co-workers had options. And the city was free to take advantage of them because of a rather unusual arrangement: Georgetown itself owns the utility company that serves the city. So officials there, unlike those in most cities, were free to negotiate with suppliers. When they learned that rates for wind power could be guaranteed for 20 years and solar for 25 years, but natural gas for only seven years, the choice, Ross says, was a “no-brainer.”

A 2014-published life-cycle analysis of land use for various sources of electricity concluded that the large-scale implementation of solar and wind potentially reduces pollution-related environmental impacts. The study found that the land-use footprint, given in square meter-years per megawatt-hour (m2a/MWh), was lowest for wind, natural gas and rooftop PV, with 0.26, 0.49 and 0.59, respectively, and followed by utility-scale solar PV with 7.9. For CSP, the footprint was 9 and 14, using parabolic troughs and solar towers, respectively. The largest footprint had coal-fired power plants with 18 m2a/MWh.[146]

“What Changes Will Maine’s New Government Bring to Your Life?” • Swept to sizable majorities in last week’s elections, Maine’s Democrats will be in full control of state government for the first time since 2010. They are likely to look for ways to address a number of pressing issues, one of which is climate change. [Kennebec Journal & Morning Sentinel]
Green energy is the term used to describe sources of energy that are considered to be environmentally friendly and non-polluting, such as geothermal, wind, solar, and hydro. Sometimes nuclear power is also considered a green energy source. Green energy sources are often considered "green" because they are perceived to lower carbon emissions and create less pollution.

The primary obstacle that is preventing the large scale implementation of solar powered energy generation is the inefficiency of current solar technology. Currently, photovoltaic (PV) panels only have the ability to convert around 24% of the sunlight that hits them into electricity.[125] At this rate, solar energy still holds many challenges for widespread implementation, but steady progress has been made in reducing manufacturing cost and increasing photovoltaic efficiency. Both Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), have heavily funded solar research programs. The NREL solar program has a budget of around $75 million [126] and develops research projects in the areas of photovoltaic (PV) technology, solar thermal energy, and solar radiation.[127] The budget for Sandia’s solar division is unknown, however it accounts for a significant percentage of the laboratory’s $2.4 billion budget.[128] Several academic programs have focused on solar research in recent years. The Solar Energy Research Center (SERC) at University of North Carolina (UNC) has the sole purpose of developing cost effective solar technology. In 2008, researchers at Massachusetts Institute of Technology (MIT) developed a method to store solar energy by using it to produce hydrogen fuel from water.[129] Such research is targeted at addressing the obstacle that solar development faces of storing energy for use during nighttime hours when the sun is not shining. In February 2012, North Carolina-based Semprius Inc., a solar development company backed by German corporation Siemens, announced that they had developed the world’s most efficient solar panel. The company claims that the prototype converts 33.9% of the sunlight that hits it to electricity, more than double the previous high-end conversion rate.[130] Major projects on artificial photosynthesis or solar fuels are also under way in many developed nations.[131]
A study of the material consumption trends and requirements for wind energy in Europe found that bigger turbines have a higher consumption of precious metals but lower material input per kW generated. The current material consumption and stock was compared to input materials for various onshore system sizes. In all EU countries the estimates for 2020 exceeded and doubled the values consumed in 2009. These countries would need to expand their resources to be able to meet the estimated demand for 2020. For example, currently the EU has 3% of world supply of fluorspar and it requires 14% by 2020. Globally, the main exporting countries are South Africa, Mexico and China. This is similar with other critical and valuable materials required for energy systems such as magnesium, silver and indium. In addition, the levels of recycling of these materials is very low and focusing on that could alleviate issues with supply in the future. It is important to note that since most of these valuable materials are also used in other emerging technologies, like LEDs, PVs and LCDs, it is projected that demand for them will continue to increase.[53]
The solar thermal power industry is growing rapidly with 1.3 GW under construction in 2012 and more planned. Spain is the epicenter of solar thermal power development with 873 MW under construction, and a further 271 MW under development.[112] In the United States, 5,600 MW of solar thermal power projects have been announced.[113] Several power plants have been constructed in the Mojave Desert, Southwestern United States. The Ivanpah Solar Power Facility being the most recent. In developing countries, three World Bank projects for integrated solar thermal/combined-cycle gas-turbine power plants in Egypt, Mexico, and Morocco have been approved.[114]
The windwheel of Hero of Alexandria (10 AD – 70 AD) marks one of the first recorded instances of wind powering a machine in history.[2][3] However, the first known practical wind power plants were built in Sistan, an Eastern province of Persia (now Iran), from the 7th century. These "Panemone" were vertical axle windmills, which had long vertical drive shafts with rectangular blades.[4] Made of six to twelve sails covered in reed matting or cloth material, these windmills were used to grind grain or draw up water, and were used in the gristmilling and sugarcane industries.[5]
$Stop getting twisted!! Gold Plated Contacts Heavy 30 amp Per conductor slip ring total 90 amps....Great for even heavy 12 volt environment wind generators as used in our Hurricane XP turbines Specs ---30 amps per conductor --- 250 volts AC/DC per circuit ---2200 watts per conductor --- rpms 0-300 ---Gold Plated Contacts ---Operational Lifespan: 80,000,000 revolutions depending on temperature, rotation speed and enviroment This rotating connector will be great for the wind generator. The current can be split up in DC applications by using two conductors to cut down on the resistance. If you have application specific questions feel free to ask me before buying. Has 3 mounting holes in colar and long wires for easy installation. To International buyers: the sales price does not include customs or duties that your country may include.

Any solar PV system that’s tied to the grid will use a bi-directional meter. When you use electricity from the grid, you’ll see your meter move forward. But when your solar PV system produces electricity, any excess will go back into the grid and your meter will move backward. This is called “net metering,” and the utility company will credit your bill for the excess electricity generated.


By now you are probably thinking “why would these guys tell me the truth? They sell small wind turbines!”. Yup, guilty as charged. We also want happy customers, and the two are not reconcilable unless we are upfront with you, our customer. Truth is, wind turbine sales are a tiny part of our revenue, and while we would regret losing you, we will still be able to put food on our kids’ plates.
A typical house usually requires a home wind turbine with a 5 kW generating capacity to meet all its energy requirements. A turbine that offers this much power would have to be around 13 to 18 feet in diameter and positioned in an area where strong winds often pass through. There are also plenty of smaller, cheaper turbines, but these variants produce less power and are less reliable than their more expensive counterparts.
Wind power first appeared in Europe during the Middle Ages. The first historical records of their use in England date to the 11th or 12th centuries and there are reports of German crusaders taking their windmill-making skills to Syria around 1190.[6] By the 14th century, Dutch windmills were in use to drain areas of the Rhine delta. Advanced wind turbines were described by Croatian inventor Fausto Veranzio. In his book Machinae Novae (1595) he described vertical axis wind turbines with curved or V-shaped blades.
Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass.[99] As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Wood remains the largest biomass energy source today;[100] examples include forest residues – such as dead trees, branches and tree stumps –, yard clippings, wood chips and even municipal solid waste. In the second sense, biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including biofuels. Industrial biomass can be grown from numerous types of plants, including miscanthus, switchgrass, hemp, corn, poplar, willow, sorghum, sugarcane, bamboo,[101] and a variety of tree species, ranging from eucalyptus to oil palm (palm oil).
The expansion is thanks largely to innovation on the policy front, which has opened up opportunities in regulated electricity markets. The number of corporate renewable energy deals signed under utility green tariff programs continues to grow, representing around 25 percent of corporate renewables procurement so far this year. At the same time, utilities are incorporating corporate renewables into their long-term planning — and thinking about solutions beyond green tariffs to better meet the needs of existing corporate customers and smaller loads.
The W03083 Firman generator is perfect in and The W03083 Firman generator is perfect in and around the RV on the campsite while powering small appliances or while at home. Its Fuel Economy Mode reduces fuel consumption and promotes engine efficiency. It uses an OHV electric start engine (Max-Pro Series) for longer life higher performance and lower maintenance. ...  More + Product Details Close
Most current solar power plants are made from an array of similar units where each unit is continuously adjusted, e.g., with some step motors, so that the light converter stays in focus of the sun light. The cost of focusing light on converters such as high-power solar panels, Stirling engine, etc. can be dramatically decreased with a simple and efficient rope mechanics.[55] In this technique many units are connected with a network of ropes so that pulling two or three ropes is sufficient to keep all light converters simultaneously in focus as the direction of the sun changes.

Several groups in various sectors are conducting research on Jatropha curcas, a poisonous shrub-like tree that produces seeds considered by many to be a viable source of biofuels feedstock oil.[117] Much of this research focuses on improving the overall per acre oil yield of Jatropha through advancements in genetics, soil science, and horticultural practices. SG Biofuels, a San Diego-based Jatropha developer, has used molecular breeding and biotechnology to produce elite hybrid seeds of Jatropha that show significant yield improvements over first generation varieties.[118] The Center for Sustainable Energy Farming (CfSEF) is a Los Angeles-based non-profit research organization dedicated to Jatropha research in the areas of plant science, agronomy, and horticulture. Successful exploration of these disciplines is projected to increase Jatropha farm production yields by 200-300% in the next ten years.[119]


It is hard to beat the advantages of solar: No moving parts. Warranties of 25 years are common for PV modules. No maintenance, other than the occasional hosing-off if you live in a dusty place. The installed price of a 6 kW wind turbine on a good height tower is about $50,000 (and we are not even counting the money you are going to sink into maintenance of that wind turbine). At the time of this writing, half that money will buy you about 7 kW of installed solar panels. In our not-so-sunny Ottawa location those solar modules will produce around 8,000 kWh of electrical energy per average year, and they will do that for 30 years or more.
The energy number that is left over should be a good approximation of what you can expect from that VAWT. Compare the resulting numbers with those mentioned in just about all sales brochures of VAWT type turbines and it should be immediately clear that their marketing people are smoking The Good Stuff. There is no relation to physical reality in their numbers, they are consistently much too high. Keep in mind that the energy production numbers calculated here are ‘best case’; for a turbine in nice, smooth air. Most VAWTs are placed very close to the ground, or on buildings, where there is little wind and lots of turbulence. Under those conditions they will do much, much worse than predicted.
“New Wind May Be Cheaper than Old, Reliable Coal” • Wind farms have cost less to build and operate than coal-fired power plants for some time. The trend of lower costs for renewables has crossed a threshold: it is sometimes cheaper to build a brand new wind facility than keep an old coal plant burning, according to Lazard Ltd. [Casper Star-Tribune Online]
Photovoltaics were initially solely used as a source of electricity for small and medium-sized applications, from the calculator powered by a single solar cell to remote homes powered by an off-grid rooftop PV system. Commercial concentrated solar power plants were first developed in the 1980s. The 392 MW Ivanpah installation is the largest concentrating solar power plant in the world, located in the Mojave Desert of California.
×