The array of a photovoltaic power system, or PV system, produces direct current (DC) power which fluctuates with the sunlight's intensity. For practical use this usually requires conversion to certain desired voltages or alternating current (AC), through the use of inverters.[4] Multiple solar cells are connected inside modules. Modules are wired together to form arrays, then tied to an inverter, which produces power at the desired voltage, and for AC, the desired frequency/phase.[4]
A photovoltaic system converts light into electrical direct current (DC) by taking advantage of the photoelectric effect.[51] Solar PV has turned into a multi-billion, fast-growing industry, continues to improve its cost-effectiveness, and has the most potential of any renewable technologies together with CSP.[52][53] Concentrated solar power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Commercial concentrated solar power plants were first developed in the 1980s. CSP-Stirling has by far the highest efficiency among all solar energy technologies.
Materials that are typically used for the rotor blades in wind turbines are composites, as they tend to have a high stiffness, high strength, high fatigue resistance, and low weight.[46] Typical resins used for these composites include polyester and epoxy, while glass and carbon fibers have been used for the reinforcing material.[47] Construction may use manual layup techniques or composite resin injection molding. As the price of glass fibers is only about one tenth the price of carbon fiber, glass fiber is still dominant.
Climate change and global warming concerns, coupled with high oil prices, peak oil, and increasing government support, are driving increasing renewable energy legislation, incentives and commercialization.[10] New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors.[24] According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment.[25]

Join GTM at the upcoming Power & Renewables Summit! We'll cover how decarbonization, sector electrification and shifting regulatory developments will transform power markets over the next 10-to-20 years. We have already confirmed senior executives with FERC, Exelon, ERCOT, PJM, APS, Microsoft, Dell, CPS Energy, NRG, CohnReznick, Los Angeles Department of Water & Power and many more. Learn more here.
“As Trump’s Tariffs Raise the Cost of Solar Installations, Elon Musk and Tesla Cut Their Prices” • Tesla, unmoved by tariffs, is reducing prices on its solar systems 10–20% in recognition of the progress it has made streamlining its solar sales process by integrating Tesla Energy products into its existing high-traffic storefronts. [Red, Green, and Blue]
“New Wind May Be Cheaper than Old, Reliable Coal” • Wind farms have cost less to build and operate than coal-fired power plants for some time. The trend of lower costs for renewables has crossed a threshold: it is sometimes cheaper to build a brand new wind facility than keep an old coal plant burning, according to Lazard Ltd. [Casper Star-Tribune Online]
The Solar updraft tower is a renewable-energy power plant for generating electricity from low temperature solar heat. Sunshine heats the air beneath a very wide greenhouse-like roofed collector structure surrounding the central base of a very tall chimney tower. The resulting convection causes a hot air updraft in the tower by the chimney effect. This airflow drives wind turbines placed in the chimney updraft or around the chimney base to produce electricity. Plans for scaled-up versions of demonstration models will allow significant power generation, and may allow development of other applications, such as water extraction or distillation, and agriculture or horticulture. A more advanced version of a similarly themed technology is the Vortex engine which aims to replace large physical chimneys with a vortex of air created by a shorter, less-expensive structure.
Common battery technologies used in today's home PV systems include, the valve regulated lead-acid battery– a modified version of the conventional lead–acid battery, nickel–cadmium and lithium-ion batteries. Lead-acid batteries are currently the predominant technology used in small-scale, residential PV systems, due to their high reliability, low self discharge and investment and maintenance costs, despite shorter lifetime and lower energy density. However, lithium-ion batteries have the potential to replace lead-acid batteries in the near future, as they are being intensively developed and lower prices are expected due to economies of scale provided by large production facilities such as the Gigafactory 1. In addition, the Li-ion batteries of plug-in electric cars may serve as a future storage devices in a vehicle-to-grid system. Since most vehicles are parked an average of 95 percent of the time, their batteries could be used to let electricity flow from the car to the power lines and back. Other rechargeable batteries used for distributed PV systems include, sodium–sulfur and vanadium redox batteries, two prominent types of a molten salt and a flow battery, respectively.[114][115][116]
Manufacturers often claim that their vertical axis turbine is superior to a horizontal one, because it always faces the wind. So does any horizontal axis turbine, thanks to their tail or yaw mechanism. If the airflow is such that wind directions change drastically from one second to the next it means you have lots of turbulence, and that means it is a poor place to put any wind turbine, HAWT or VAWT.
The stiffness of composites is determined by the stiffness of fibers and their volume content. Typically, E-glass fibers are used as main reinforcement in the composites. Typically, the glass/epoxy composites for wind blades contain up to 75 weight % glass. This increases the stiffness, tensile and compression strength. A promising source of the composite materials in the future is glass fibers with modified compositions like S-glass, R-glass etc. Some other special glasses developed by Owens Corning are ECRGLAS, Advantex and most recently WindStrand glass fibers. [49]

Biomass briquettes are increasingly being used in the developing world as an alternative to charcoal. The technique involves the conversion of almost any plant matter into compressed briquettes that typically have about 70% the calorific value of charcoal. There are relatively few examples of large-scale briquette production. One exception is in North Kivu, in eastern Democratic Republic of Congo, where forest clearance for charcoal production is considered to be the biggest threat to mountain gorilla habitat. The staff of Virunga National Park have successfully trained and equipped over 3500 people to produce biomass briquettes, thereby replacing charcoal produced illegally inside the national park, and creating significant employment for people living in extreme poverty in conflict-affected areas.[18]
Many residential PV systems are connected to the grid wherever available, especially in developed countries with large markets.[10] In these grid-connected PV systems, use of energy storage is optional. In certain applications such as satellites, lighthouses, or in developing countries, batteries or additional power generators are often added as back-ups. Such stand-alone power systems permit operations at night and at other times of limited sunlight.