A: Modern solar panels typically last twenty to thirty years before there’s a noticeable increase in output loss. Most residential solar providers offer a 20- to 25-year warranty, but many such warranties only guarantee a certain power output (e.g., a guarantee of 80% output for twenty years). Carefully read through the fine print to make sure you understand the warranty and what it covers.
In the 1980s and early 1990s, most photovoltaic modules provided remote-area power supply, but from around 1995, industry efforts have focused increasingly on developing building integrated photovoltaics and power plants for grid connected applications (see photovoltaic power stations article for details). Currently the largest photovoltaic power plant in North America is the Nellis Solar Power Plant (15 MW).[24][25] There is a proposal to build a Solar power station in Victoria, Australia, which would be the world's largest PV power station, at 154 MW.[26][27] Other large photovoltaic power stations include the Girassol solar power plant (62 MW),[28] and the Waldpolenz Solar Park (40 MW).[29]
If you can turn a wrench and operate an electric drill, you can build this simple generator in two days: one day for chasing down parts, and one day for assembling the components. The four major components include a vehicle alternator with a built-in voltage regulator, a General Motors (GM) fan and clutch assembly (I used one from a 1988 GM 350 motor), a tower or pole on which to mount the generator (15 feet of used 2-inch tubing cost me $20), and the metal to build a bracket for mounting the generator on the tower or pole. If you’re a Ford guy or a Mopar gal, that’s fine — just make sure your alternator has a built-in voltage regulator. You’ll also need some electrical cable or wires to hook the alternator up to your storage batteries. I used 8-gauge, 3-conductor cable pilfered from the oil patch. (And they said the transition from fossil fuels to renewables would take years. Pfft!)

Flashing 6 Times: High temperature protection; Flashing 7 Times: PWM driving undervoltage/overvoltage; Flashing 8 Times: Internal voltage reference undervoltage/overvoltage; Flashing 9 Times: Sensor bias current error; Flashing 10 Times: Hardware zero passage detection failure. Noted that the above operations can only be performed with the power grid connected.
Space-Based Solar Power Satellites seek to overcome the problems of storage and provide civilization-scale power that is clean, constant, and global. Japan and China have active national programs aimed at commercial scale Space-Based Solar Power (SBSP), and both nation's hope to orbit demonstrations in the 2030s. The China Academy of Space Technology (CAST) won the 2015 International SunSat Design Competition with this video of their Multi-Rotary Joint design. Proponents of SBSP claim that Space-Based Solar Power would be clean, constant, and global, and could scale to meet all planetary energy demand.[56] A recent multi-agency industry proposal (echoing the 2008 Pentagon recommendation) won the SECDEF/SECSTATE/USAID Director D3 (Diplomacy, Development, Defense) Innovation Challenge [57] with the following pitch and vision video.[132] Northrop Grumman is funding CALTECH with $17.5 million[133] for an ultra lightweight design.[134] Keith Henson posted a video of a "bootstrapping" approach.
Previously, the largest U.S. city fully powered by renewables was Burlington, Vermont (pop. 42,000), home to Senator Bernie Sanders, the jam band Phish and the original Ben & Jerry’s. Georgetown’s feat is all the more dramatic because it demolishes the notion that sustainability is synonymous with socialism and GMO-free ice cream. “You think of climate change and renewable energy, from a political standpoint, on the left-hand side of the spectrum, and what I’ve done is toss all those partisan political thoughts aside,” Ross says. “We’re doing this because it’s good for our citizens. Cheaper electricity is better. Clean energy is better than fossil fuels.”
Solar energy is a flexible energy technology: it can be built as distributed generation (located at or near the point of use) or as a central-station, utility-scale solar power plant (similar to traditional power plants). Both of these methods can also store the energy they produce for distribution after the sun sets, using cutting edge solar + storage technologies.

Eight solar panels and one measly little wind generator supplied all the power we used. We bolted the pole that supported the wind generator to a wall of our house, which, sound-wise, turned the roof of the house into one big drumhead.  Oops! Live and learn. And when the wind REALLY blew—which was often—the thing broke. The manufacturer replaced the main unit several times before we gave up on wind power.
However, it has been found that high emissions are associated only with shallow reservoirs in warm (tropical) locales, and recent innovations in hydropower turbine technology are enabling efficient development of low-impact run-of-the-river hydroelectricity projects.[17] Generally speaking, hydroelectric plants produce much lower life-cycle emissions than other types of generation. Hydroelectric power, which underwent extensive development during growth of electrification in the 19th and 20th centuries, is experiencing resurgence of development in the 21st century. The areas of greatest hydroelectric growth are the booming economies of Asia. China is the development leader; however, other Asian nations are installing hydropower at a rapid pace. This growth is driven by much increased energy costs—especially for imported energy—and widespread desires for more domestically produced, clean, renewable, and economical generation.

Ross is now an energy celebrity, sitting on conference panels and lending Georgetown’s cachet to environmental-film screenings. And it isn’t only conservatives who buttonhole him. As if to prove the adage that no good deed goes unpunished, he also hears from people who worry about the impact of renewables. “They’ll come up to me and say with a straight face, ‘You know what? Those windmills are killing birds,’ ” Ross says. “ ‘Oh, really? I didn’t know that was a big interest of yours, but you know what the number-one killer of birds is in this country? Domestic house cats. Kill about four billion birds a year. You know what the number-two killer of birds is? Buildings they fly into. So you’re suggesting that we outlaw house cats and buildings?’ They go, ‘That's not exactly what I meant.’”

The conversion of sunlight into electricity is made possible with the special properties of semi-conducting materials. It can be harnessed through a range of ever-evolving technologies like solar heating, photovoltaics, solar thermal energy, solar architecture, molten salt power plants, and artificial photosynthesis. Learn more about solar solutions from IGS Solar.

In a twist that has some Republicans in this oil- and gas-rich state whistling Dixie, Ross is now friends with Al Gore, who featured Ross in An Inconvenient Sequel, the 2017 follow-up to An Inconvenient Truth, his Oscar-winning documentary about global warming. “We bonded right away,” Ross recalls. “I said, ‘Mr. Vice President, we’ve got a lot in common. You invented the internet. I invented green energy.’” Trained as an accountant, Ross still works as one—being mayor of Georgetown is a part-time job—and there’s no mistaking his zeal for the other kind of green. When conservatives complain about his energy politics, he is quick to remind them that the city has the lowest effective tax rate in Central Texas.
Kinetic Internal Thermal Potential Gravitational Elastic Electrical potential energy Mechanical Interatomic potential Electrical Magnetic Ionization Radiant Binding Nuclear binding energy Gravitational binding energy Chromodynamic Dark Quintessence Phantom Negative Chemical Rest Sound energy Surface energy Mechanical wave Sound wave Vacuum energy Zero-point energy
Jump up ^ Schröder, K.-P.; Smith, R.C. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x. See also Palmer, J. (2008). "Hope dims that Earth will survive Sun's death". New Scientist. Retrieved 24 March 2008.
With investment subsidies, the financial burden falls upon the taxpayer, while with feed-in tariffs the extra cost is distributed across the utilities' customer bases. While the investment subsidy may be simpler to administer, the main argument in favour of feed-in tariffs is the encouragement of quality. Investment subsidies are paid out as a function of the nameplate capacity of the installed system and are independent of its actual power yield over time, thus rewarding the overstatement of power and tolerating poor durability and maintenance. Some electric companies offer rebates to their customers, such as Austin Energy in Texas, which offers $2.50/watt installed up to $15,000.[96]
Projections vary. The EIA has predicted that almost two thirds of net additions to power capacity will come from renewables by 2020 due to the combined policy benefits of local pollution, decarbonisation and energy diversification. Some studies have set out roadmaps to power 100% of the world’s energy with wind, hydroelectric and solar by the year 2030.
“Volkswagen Converting Zwickau Automotive Plant to Produce Electric Vehicles” • In a move that it believes is the first of its kind in the world for a major car factory, VW is converting its auto factory in Zwickau, Germany from internal combustion vehicle production to manufacture of electric vehicles. The plant makes 330,000 cars per year. [CleanTechnica]

Biomass briquettes are increasingly being used in the developing world as an alternative to charcoal. The technique involves the conversion of almost any plant matter into compressed briquettes that typically have about 70% the calorific value of charcoal. There are relatively few examples of large-scale briquette production. One exception is in North Kivu, in eastern Democratic Republic of Congo, where forest clearance for charcoal production is considered to be the biggest threat to mountain gorilla habitat. The staff of Virunga National Park have successfully trained and equipped over 3500 people to produce biomass briquettes, thereby replacing charcoal produced illegally inside the national park, and creating significant employment for people living in extreme poverty in conflict-affected areas.[18]
Renewable energy technology has sometimes been seen as a costly luxury item by critics, and affordable only in the affluent developed world. This erroneous view has persisted for many years, but 2015 was the first year when investment in non-hydro renewables, was higher in developing countries, with $156 billion invested, mainly in China, India, and Brazil.[134]
Several groups in various sectors are conducting research on Jatropha curcas, a poisonous shrub-like tree that produces seeds considered by many to be a viable source of biofuels feedstock oil.[117] Much of this research focuses on improving the overall per acre oil yield of Jatropha through advancements in genetics, soil science, and horticultural practices. SG Biofuels, a San Diego-based Jatropha developer, has used molecular breeding and biotechnology to produce elite hybrid seeds of Jatropha that show significant yield improvements over first generation varieties.[118] The Center for Sustainable Energy Farming (CfSEF) is a Los Angeles-based non-profit research organization dedicated to Jatropha research in the areas of plant science, agronomy, and horticulture. Successful exploration of these disciplines is projected to increase Jatropha farm production yields by 200-300% in the next ten years.[119]
List of onshore wind farms List of onshore wind farms in the United Kingdom List of offshore wind farms in the United Kingdom List of offshore wind farms in the United States Lists of offshore wind farms by country Lists of offshore wind farms by water area Lists of wind farms by country List of wind farms in Australia List of wind farms in Canada List of wind farms in Iran List of wind farms in New Zealand List of wind farms in Romania List of wind farms in Sweden List of wind farms in the United States List of wind turbine manufacturers
In 2004, natural gas accounted for about 19 percent of the U.S. electricity mix. Use of natural gas is projected to increase dramatically in the next two decades if we continue on our current path, but supplies are limited and imports are increasing. Our growing reliance on natural gas combined with limited supplies makes this fuel subject to price spikes, which can have a significant impact on consumer energy costs. In addition, though natural gas is much cleaner than coal or oil, it does produce global warming emissions when burned. So, while the use of natural gas serves as a good transition to a cleaner future, it is not the ultimate solution.
Wind turbines are generally inexpensive. They will produce electricity at between two and six cents per kilowatt hour, which is one of the lowest-priced renewable energy sources.[72] And as technology needed for wind turbines continues to improve, the prices will decrease as well. In addition, there is no competitive market for wind energy, as it does not cost money to get ahold of wind.[72] The main cost of wind turbines are the installation process. The average cost is between $48,000 and $65,000 to install. However, the energy harvested from the turbine will offset the installation cost, as well as provide virtually free energy for years after.[73]
Similarly, in the United States, the independent National Research Council has noted that "sufficient domestic renewable resources exist to allow renewable electricity to play a significant role in future electricity generation and thus help confront issues related to climate change, energy security, and the escalation of energy costs … Renewable energy is an attractive option because renewable resources available in the United States, taken collectively, can supply significantly greater amounts of electricity than the total current or projected domestic demand."[154]
Among sources of renewable energy, hydroelectric plants have the advantages of being long-lived—many existing plants have operated for more than 100 years. Also, hydroelectric plants are clean and have few emissions. Criticisms directed at large-scale hydroelectric plants include: dislocation of people living where the reservoirs are planned, and release of significant amounts of carbon dioxide during construction and flooding of the reservoir.[16]
At the end of 2014, worldwide PV capacity reached at least 177,000 megawatts. Photovoltaics grew fastest in China, followed by Japan and the United States, while Germany remains the world's largest overall producer of photovoltaic power, contributing about 7.0 percent to the overall electricity generation. Italy meets 7.9 percent of its electricity demands with photovoltaic power—the highest share worldwide.[119] For 2015, global cumulative capacity is forecasted to increase by more than 50 gigawatts (GW). By 2018, worldwide capacity is projected to reach as much as 430 gigawatts. This corresponds to a tripling within five years.[120] Solar power is forecasted to become the world's largest source of electricity by 2050, with solar photovoltaics and concentrated solar power contributing 16% and 11%, respectively. This requires an increase of installed PV capacity to 4,600 GW, of which more than half is expected to be deployed in China and India.[121]
SquareTrade Protection Plans are only valid for new or Amazon certified refurbished products purchased at Amazon in the last 30 days. By purchasing this Protection Plan you agree to the Protection Plan Terms & Conditions (http://www.squaretrade.com/terms-standard). Your Protection Plan Terms & Conditions will be delivered via email within 24 hours of purchase
The primary obstacle that is preventing the large scale implementation of solar powered energy generation is the inefficiency of current solar technology. Currently, photovoltaic (PV) panels only have the ability to convert around 24% of the sunlight that hits them into electricity.[125] At this rate, solar energy still holds many challenges for widespread implementation, but steady progress has been made in reducing manufacturing cost and increasing photovoltaic efficiency. Both Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), have heavily funded solar research programs. The NREL solar program has a budget of around $75 million [126] and develops research projects in the areas of photovoltaic (PV) technology, solar thermal energy, and solar radiation.[127] The budget for Sandia’s solar division is unknown, however it accounts for a significant percentage of the laboratory’s $2.4 billion budget.[128] Several academic programs have focused on solar research in recent years. The Solar Energy Research Center (SERC) at University of North Carolina (UNC) has the sole purpose of developing cost effective solar technology. In 2008, researchers at Massachusetts Institute of Technology (MIT) developed a method to store solar energy by using it to produce hydrogen fuel from water.[129] Such research is targeted at addressing the obstacle that solar development faces of storing energy for use during nighttime hours when the sun is not shining. In February 2012, North Carolina-based Semprius Inc., a solar development company backed by German corporation Siemens, announced that they had developed the world’s most efficient solar panel. The company claims that the prototype converts 33.9% of the sunlight that hits it to electricity, more than double the previous high-end conversion rate.[130] Major projects on artificial photosynthesis or solar fuels are also under way in many developed nations.[131]
Despite these diverse developments, developments in fossil fuel systems almost entirely eliminated any wind turbine systems larger than supermicro size. In the early 1970s, however, anti-nuclear protests in Denmark spurred artisan mechanics to develop microturbines of 22 kW. Organizing owners into associations and co-operatives lead to the lobbying of the government and utilities and provided incentives for larger turbines throughout the 1980s and later. Local activists in Germany, nascent turbine manufacturers in Spain, and large investors in the United States in the early 1990s then lobbied for policies that stimulated the industry in those countries.
“California Looks to Stationary Energy Storage as a Solution to Peaker Plants” • Central California electric utility Pacific Gas & Electric is planning to replace three old natural gas power plants in its network with stationary energy storage installations from Tesla. California is looking to add 1.3 GW of storage to its power grid by 2020. [CleanTechnica]
Green energy is the term used to describe sources of energy that are considered to be environmentally friendly and non-polluting, such as geothermal, wind, solar, and hydro. Sometimes nuclear power is also considered a green energy source. Green energy sources are often considered "green" because they are perceived to lower carbon emissions and create less pollution.
Renewable energy technology has sometimes been seen as a costly luxury item by critics, and affordable only in the affluent developed world. This erroneous view has persisted for many years, but 2015 was the first year when investment in non-hydro renewables, was higher in developing countries, with $156 billion invested, mainly in China, India, and Brazil.[134]

Second-generation technologies include solar heating and cooling, wind power, modern forms of bioenergy and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. The initial investment was prompted by energy security concerns linked to the oil crises (1973 and 1979) of the 1970s but the continuing appeal of these renewables is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials.
The Solar updraft tower is a renewable-energy power plant for generating electricity from low temperature solar heat. Sunshine heats the air beneath a very wide greenhouse-like roofed collector structure surrounding the central base of a very tall chimney tower. The resulting convection causes a hot air updraft in the tower by the chimney effect. This airflow drives wind turbines placed in the chimney updraft or around the chimney base to produce electricity. Plans for scaled-up versions of demonstration models will allow significant power generation, and may allow development of other applications, such as water extraction or distillation, and agriculture or horticulture. A more advanced version of a similarly themed technology is the Vortex engine which aims to replace large physical chimneys with a vortex of air created by a shorter, less-expensive structure.
Photovoltaics (PV) uses solar cells assembled into solar panels to convert sunlight into electricity. It's a fast-growing technology doubling its worldwide installed capacity every couple of years. PV systems range from small, residential and commercial rooftop or building integrated installations, to large utility-scale photovoltaic power station. The predominant PV technology is crystalline silicon, while thin-film solar cell technology accounts for about 10 percent of global photovoltaic deployment. In recent years, PV technology has improved its electricity generating efficiency, reduced the installation cost per watt as well as its energy payback time, and has reached grid parity in at least 30 different markets by 2014.[115] Financial institutions are predicting a second solar "gold rush" in the near future.[116][117][118]
For a 6 kW wind turbine to produce that much energy per average year, you need an annual average wind speed of close to 5 m/s (11 mph) blowing at turbine hub height. It may not sound like much, but that is a reasonably windy place. Much of North America does not have that much wind at 100′ or below. Keep in mind, you need that much wind just to break even in energy production vs. solar. To outweigh the disadvantages of small turbines you better have more!
A good match between generation and consumption is key for high self consumption, and should be considered when deciding where to install solar power and how to dimension the installation. The match can be improved with batteries or controllable electricity consumption.[94] However, batteries are expensive and profitability may require provision of other services from them besides self consumption increase.[95] Hot water storage tanks with electric heating with heat pumps or resistance heaters can provide low-cost storage for self consumption of solar power.[94] Shiftable loads, such as dishwashers, tumble dryers and washing machines, can provide controllable consumption with only a limited effect on the users, but their effect on self consumption of solar power may be limited.[94]