By Ellen Coleman—As an American of non-specific cultural identity, I look with envy at families with strong cultural tradition. I wonder who "my people” are. What family traditions will my children (now grown) want to pass on to their own children?  Their exposure has been such a mixed bag of “ritual”—making tamales for Thanksgiving, potstickers for family reunions, fried eggplant for Fourth of July.  What will be their choice of comfort music?  What kinds of homes will they make, what spiritual paths will they take?
A Wind Turbine Generator is what makes your electricity by converting mechanical energy into electrical energy. Lets be clear here, they do not create energy or produce more electrical energy than the amount of mechanical energy being used to spin the rotor blades. The greater the “load”, or electrical demand placed on the generator, the more mechanical force is required to turn the rotor. This is why generators come in different sizes and produce differing amounts of electricity.
In October 2018, the American Council for an Energy-Efficient Economy (ACEEE) released its annual "State Energy Efficiency Scorecard." The scorecard concluded that states and electric utility companies are continuing to expand energy efficiency measures in order to meet clean energy goals. In 2017, the U.S. spent $6.6 billion in electricity efficiency programs. $1.3 billion was spent on natural gas efficiency. These programs resulted in 27.3 million megawatt hours (MWh) of electricity saved.[160]
The generator, which is approximately 34% of the wind turbine cost, includes the electrical generator,[38][39] the control electronics, and most likely a gear box (e.g. planetary gear box),[40] adjustable-speed drive or continuously variable transmission[41] component for converting the low-speed incoming rotation to high-speed rotation suitable for generating electricity.
Second-generation technologies include solar heating and cooling, wind power, modern forms of bioenergy and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. The initial investment was prompted by energy security concerns linked to the oil crises (1973 and 1979) of the 1970s but the continuing appeal of these renewables is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials.

There are two main reasons for this, according to Kevin Haley, BRC program manager. First, there’s been strong continued support from major tech companies with large electricity loads. Facebook and AT&T, for instance, have procured the most new renewable energy capacity in 2018, with other large deals from Microsoft, Apple and Walmart. The second reason is that the pool of corporate customers is starting to expand.
Using 100% renewable energy was first suggested in a Science paper published in 1975 by Danish physicist Bent Sørensen.[150] It was followed by several other proposals, until in 1998 the first detailed analysis of scenarios with very high shares of renewables were published. These were followed by the first detailed 100% scenarios. In 2006 a PhD thesis was published by Czisch in which it was shown that in a 100% renewable scenario energy supply could match demand in every hour of the year in Europe and North Africa. In the same year Danish Energy professor Henrik Lund published a first paper[151] in which he addresses the optimal combination of renewables, which was followed by several other papers on the transition to 100% renewable energy in Denmark. Since then Lund has been publishing several papers on 100% renewable energy. After 2009 publications began to rise steeply, covering 100% scenarios for countries in Europe, America, Australia and other parts of the world.[152]
Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns and speeds vary greatly across the United States and are modified by bodies of water, vegetation, and differences in terrain. Humans use this wind flow, or motion energy, for many purposes: sailing, flying a kite, and even generating electricity.

With investment subsidies, the financial burden falls upon the taxpayer, while with feed-in tariffs the extra cost is distributed across the utilities' customer bases. While the investment subsidy may be simpler to administer, the main argument in favour of feed-in tariffs is the encouragement of quality. Investment subsidies are paid out as a function of the nameplate capacity of the installed system and are independent of its actual power yield over time, thus rewarding the overstatement of power and tolerating poor durability and maintenance. Some electric companies offer rebates to their customers, such as Austin Energy in Texas, which offers $2.50/watt installed up to $15,000.[96]
The first three are active solar systems, which use mechanical or electrical devices that convert the sun's heat or light to another form of usable energy. Passive solar buildings are designed and oriented to collect, store, and distribute the heat energy from sunlight to maintain the comfort of the occupants without the use of moving parts or electronics.
What? You are still reading? If we did not talk you out of a wind turbine by now there may still be hope! There certainly are situations where a small wind turbine makes perfect sense: If you are off-grid you should definitely consider adding a wind turbine. Wind and solar tend to complement each other beautifully; the sunny days tend to be not very windy, while the windy days tend to have little sun. Wind turbines generally produce most energy in the winter, when solar panels fall short.
Because one obstacle to adopting wind and solar power is reliability—what happens on calm, cloudy days?—recent improvements in energy-storage technology, a.k.a. batteries, are helping accelerate adoption of renewables. Last May, for example, Tucson Electric Power signed a deal for solar energy with storage, which can mitigate (if not entirely resolve) concerns about how to provide power on gray days. The storage upped the energy cost by $15 per megawatt hour. By the end of the year, the Public Service Company of Colorado had been quoted a storage fee that increased the cost of a megawatt hour by only $3 to $7, a drop of more than 50 percent. In a landmark achievement, Tesla installed the world’s largest lithium-ion battery in South Australia last December, to store wind-generated power. But by then Hyundai Electric was at work in the South Korean metropolis of Ulsan on a battery that was 50 percent bigger.
Compact Linear Fresnel Reflectors are CSP-plants which use many thin mirror strips instead of parabolic mirrors to concentrate sunlight onto two tubes with working fluid. This has the advantage that flat mirrors can be used which are much cheaper than parabolic mirrors, and that more reflectors can be placed in the same amount of space, allowing more of the available sunlight to be used. Concentrating linear fresnel reflectors can be used in either large or more compact plants.[16][17]
×