In the next tutorial about Wind Turbine Generators we will look at DC machines and how we can use a DC Generator to produce electricity from the power of the wind. To learn more about “Wind Turbine Generators”, or obtain more wind energy information about the various wind turbine generating systems available, or to explore the advantages and disadvantages of wind energy, Click Here to get your copy of one of the top “Wind Turbine Guides” today direct from Amazon.
The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. Charles Fritts installed the world's first rooftop photovoltaic solar array, using 1%-efficient selenium cells, on a New York City roof in 1884.[28] However, development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum.[29] In 1974 it was estimated that only six private homes in all of North America were entirely heated or cooled by functional solar power systems.[30] The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies.[31][32] Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the United States (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer–ISE).[33] Between 1970 and 1983 installations of photovoltaic systems grew rapidly, but falling oil prices in the early 1980s moderated the growth of photovoltaics from 1984 to 1996.
In 2015, Ross wrote an op-ed for Time magazine about his city’s planned transition to renewables. “A town in the middle of a state that recently sported oil derricks on its license plates may not be where you’d expect to see leaders move to clean solar and wind generation,” he wrote. Lest readers get the wrong idea, he felt compelled to explain: “No, environmental zealots have not taken over City Council.”
The typical cost factors for solar power include the costs of the modules, the frame to hold them, wiring, inverters, labour cost, any land that might be required, the grid connection, maintenance and the solar insolation that location will receive. Adjusting for inflation, it cost $96 per watt for a solar module in the mid-1970s. Process improvements and a very large boost in production have brought that figure down to 68 cents per watt in February 2016, according to data from Bloomberg New Energy Finance.[69] Palo Alto California signed a wholesale purchase agreement in 2016 that secured solar power for 3.7 cents per kilowatt-hour. And in sunny Dubai large-scale solar generated electricity sold in 2016 for just 2.99 cents per kilowatt-hour – "competitive with any form of fossil-based electricity — and cheaper than most."[70]

The first words of everyone calling us are “the wind is blowing here all the time”. People consistently overestimate how windy their place actually is. They forget about all the times the wind does not blow, and only remember the windy days. Such is human nature. Before even considering a small wind turbine you need to have a good idea of the annual average wind speed for your site. The gold standard is to install a data-logging anemometer (wind meter) at the same height and location as the proposed wind turbine, and let it run for 3 to 5 years. Truth is that it is usually much too expensive to do for small wind turbines, and while logging for 1 year could give you some idea and is the absolute minimum for worthwhile wind information, it is too short to be very reliable. For most of us, the more economical way to find out about the local average wind speed is by looking at a wind atlas, meteorological data, airport information and possibly the local vegetation (for windy spots the trees take on interesting shapes).
In conclusion, I would say that however great the scientific importance of this discovery may be, its practical value will be no less obvious when we reflect that the supply of solar energy is both without limit and without cost, and that it will continue to pour down upon us for countless ages after all the coal deposits of the earth have been exhausted and forgotten.[36]

“Volkswagen Converting Zwickau Automotive Plant to Produce Electric Vehicles” • In a move that it believes is the first of its kind in the world for a major car factory, VW is converting its auto factory in Zwickau, Germany from internal combustion vehicle production to manufacture of electric vehicles. The plant makes 330,000 cars per year. [CleanTechnica]
By Ellen Coleman—As an American of non-specific cultural identity, I look with envy at families with strong cultural tradition. I wonder who "my people” are. What family traditions will my children (now grown) want to pass on to their own children?  Their exposure has been such a mixed bag of “ritual”—making tamales for Thanksgiving, potstickers for family reunions, fried eggplant for Fourth of July.  What will be their choice of comfort music?  What kinds of homes will they make, what spiritual paths will they take?
Solar panel installation by NABCEP certified Corpus Christi solar installers is important for both safety and long term performance of your solar power installation.  Whether your solar panels are for your home or commercial installation, and will be connected to the grid through net metering, or completely off the grid, employing local Corpus Christi solar panel installation experts will ensure your satisfaction and provide for quick follow-up and maintenance.  Fill out our Corpus Christi solar panel installation form and we will have an approved, licensed solar panel installer from Corpus Christi contact you within hours. 
The life-cycle greenhouse-gas emissions of solar power are in the range of 22 to 46 gram (g) per kilowatt-hour (kWh) depending on if solar thermal or solar PV is being analyzed, respectively. With this potentially being decreased to 15 g/kWh in the future.[121] For comparison (of weighted averages), a combined cycle gas-fired power plant emits some 400–599 g/kWh,[122] an oil-fired power plant 893 g/kWh,[122] a coal-fired power plant 915–994 g/kWh[123] or with carbon capture and storage some 200 g/kWh, and a geothermal high-temp. power plant 91–122 g/kWh.[122] The life cycle emission intensity of hydro, wind and nuclear power are lower than solar's as of 2011 as published by the IPCC, and discussed in the article Life-cycle greenhouse-gas emissions of energy sources. Similar to all energy sources were their total life cycle emissions primarily lay in the construction and transportation phase, the switch to low carbon power in the manufacturing and transportation of solar devices would further reduce carbon emissions. BP Solar owns two factories built by Solarex (one in Maryland, the other in Virginia) in which all of the energy used to manufacture solar panels is produced by solar panels. A 1-kilowatt system eliminates the burning of approximately 170 pounds of coal, 300 pounds of carbon dioxide from being released into the atmosphere, and saves up to 105 gallons of water consumption monthly.[124]
Most small wind turbines do not perform quite as well as their manufacturers want you to believe. That should come as no surprise at this point. What may be surprising is that even the turbines of the more honourable manufacturers that are honest about performance fall short, more often than not. The likely cause is turbulence and improper site selection.
A report by the United States Geological Survey estimated the projected materials requirement in order to fulfill the US commitment to supplying 20% of its electricity from wind power by 2030. They did not address requirements for small turbines or offshore turbines since those were not widely deployed in 2008, when the study was created. They found that there are increases in common materials such as cast iron, steel and concrete that represent 2–3% of the material consumption in 2008. Between 110,000 and 115,000 metric tons of fiber glass would be required annually, equivalent to 14% of consumption in 2008. They did not see a high increase in demand for rare metals compared to available supply, however rare metals that are also being used for other technologies such as batteries which are increasing its global demand need to be taken into account. Land, whbich might not be considered a material, is an important resource in deploying wind technologies. Reaching the 2030 goal would require 50,000 square kilometers of onshore land area and 11,000 square kilometers of offshore. This is not considered a problem in the US due to its vast area and the ability to use land for farming and grazing. A greater limitation for the technology would be the variability and transmission infrastructure to areas of higher demand.[54]
The W03083 Firman generator is perfect in and The W03083 Firman generator is perfect in and around the RV on the campsite while powering small appliances or while at home. Its Fuel Economy Mode reduces fuel consumption and promotes engine efficiency. It uses an OHV electric start engine (Max-Pro Series) for longer life higher performance and lower maintenance. ...  More + Product Details Close

✅ FEATURES: Integrated automatic braking system to protect from sudden and high wind speed. Easy DIY installation methods with all materials provided. Can be used in conjunction with solar panels. MPPT Maximum power point tracking built into the wind turbine generator. Made with high quality Polypropylene and Glass Fiber material with a weather resistant seal.


Worldwide growth of photovoltaics has averaged 40% per year from 2000 to 2013[35] and total installed capacity reached 303 GW at the end of 2016 with China having the most cumulative installations (78 GW)[36] and Honduras having the highest theoretical percentage of annual electricity usage which could be generated by solar PV (12.5%).[36][35] The largest manufacturers are located in China.[37][38]
“Five New State Governors Aim for 100% Renewables” • Five governors-elect in Colorado, Illinois, Nevada, Connecticut, and Maine, states with a combined population of 26 million, put forth campaign goals of 100% renewable electricity. Currently, only California and Hawaii have a deadline to move to 100% zero-carbon electricity. [pv magazine International]
The waste we generate ends up in landfills, where it decomposes and produces landfill gas made of approximately 50 percent methane. This gas can be captured and used to fuel electric generators. Since large landfills must burn off this gas to reduce the hazards arising from gas buildup, this method of renewable energy is one of the most successful.
Which is to say that Ross and his co-workers had options. And the city was free to take advantage of them because of a rather unusual arrangement: Georgetown itself owns the utility company that serves the city. So officials there, unlike those in most cities, were free to negotiate with suppliers. When they learned that rates for wind power could be guaranteed for 20 years and solar for 25 years, but natural gas for only seven years, the choice, Ross says, was a “no-brainer.”
The Solar updraft tower is a renewable-energy power plant for generating electricity from low temperature solar heat. Sunshine heats the air beneath a very wide greenhouse-like roofed collector structure surrounding the central base of a very tall chimney tower. The resulting convection causes a hot air updraft in the tower by the chimney effect. This airflow drives wind turbines placed in the chimney updraft or around the chimney base to produce electricity. Plans for scaled-up versions of demonstration models will allow significant power generation, and may allow development of other applications, such as water extraction or distillation, and agriculture or horticulture. A more advanced version of a similarly themed technology is the Vortex engine which aims to replace large physical chimneys with a vortex of air created by a shorter, less-expensive structure.
Based on REN21's 2017 report, renewables contributed 19.3% to humans' global energy consumption and 24.5% to their generation of electricity in 2015 and 2016, respectively. This energy consumption is divided as 8.9% coming from traditional biomass, 4.2% as heat energy (modern biomass, geothermal and solar heat), 3.9% hydro electricity and 2.2% is electricity from wind, solar, geothermal, and biomass. Worldwide investments in renewable technologies amounted to more than US$286 billion in 2015, with countries such as China and the United States heavily investing in wind, hydro, solar and biofuels.[5] Globally, there are an estimated 7.7 million jobs associated with the renewable energy industries, with solar photovoltaics being the largest renewable employer.[6] As of 2015 worldwide, more than half of all new electricity capacity installed was renewable.[7]
Jump up ^ James, Paul; Magee, Liam; Scerri, Andy; Steger, Manfred B. (2015). Urban Sustainability in Theory and Practice:. London: Routledge.; Liam Magee; Andy Scerri; Paul James; Jaes A. Thom; Lin Padgham; Sarah Hickmott; Hepu Deng; Felicity Cahill (2013). "Reframing social sustainability reporting: Towards an engaged approach". Environment, Development and Sustainability. Springer.
Commercial concentrated solar power plants were first developed in the 1980s. As the cost of solar electricity has fallen, the number of grid-connected solar PV systems has grown into the millions and utility-scale solar power stations with hundreds of megawatts are being built. Solar PV is rapidly becoming an inexpensive, low-carbon technology to harness renewable energy from the Sun.

When energy is purchased from the electricity network, the power reaching the consumer will not necessarily be generated from green energy sources. The local utility company, electric company, or state power pool buys their electricity from electricity producers who may be generating from fossil fuel, nuclear or renewable energy sources. In many countries green energy currently provides a very small amount of electricity, generally contributing less than 2 to 5% to the overall pool. In some U.S. states, local governments have formed regional power purchasing pools using Community Choice Aggregation and Solar Bonds to achieve a 51% renewable mix or higher, such as in the City of San Francisco.[76]


Renewable electricity production, from sources such as wind power and solar power, is sometimes criticized for being variable or intermittent, but is not true for concentrated solar, geothermal and biofuels, that have continuity. In any case, the International Energy Agency has stated that deployment of renewable technologies usually increases the diversity of electricity sources and, through local generation, contributes to the flexibility of the system and its resistance to central shocks.[191]
“Volkswagen Converting Zwickau Automotive Plant to Produce Electric Vehicles” • In a move that it believes is the first of its kind in the world for a major car factory, VW is converting its auto factory in Zwickau, Germany from internal combustion vehicle production to manufacture of electric vehicles. The plant makes 330,000 cars per year. [CleanTechnica]
A typical house usually requires a home wind turbine with a 5 kW generating capacity to meet all its energy requirements. A turbine that offers this much power would have to be around 13 to 18 feet in diameter and positioned in an area where strong winds often pass through. There are also plenty of smaller, cheaper turbines, but these variants produce less power and are less reliable than their more expensive counterparts.
Modern turbines usually have a small onboard crane for hoisting maintenance tools and minor components. However, large heavy components like generator, gearbox, blades and so on are rarely replaced and a heavy lift external crane is needed in those cases. If the turbine has a difficult access road, a containerized crane can be lifted up by the internal crane to provide heavier lifting.[68]
In 2015, Ross wrote an op-ed for Time magazine about his city’s planned transition to renewables. “A town in the middle of a state that recently sported oil derricks on its license plates may not be where you’d expect to see leaders move to clean solar and wind generation,” he wrote. Lest readers get the wrong idea, he felt compelled to explain: “No, environmental zealots have not taken over City Council.”
If you do install an anemometer and measure the wind over one or more years, you should compare the annual average wind speed obtained from your anemometer data to the annual average of the nearest airport or meteo-station for that same year. This will tell you if your site is more or less windy than that airport or meteo-station, and by how much. Then compare that year’s data  to the long-term annual average wind speed, and you will know what to expect over the long term, corrected for your particular site. It will not be exact, but it will make your short-term anemometer data much more useful.
Materials for wind turbine parts other than the rotor blades (including the rotor hub, gearbox, frame, and tower) are largely composed of steel. Modern turbines use a couple of tons of copper for generators, cables, and such.[52] Smaller wind turbines have begun incorporating more aluminum based alloys into these components in an effort to make the turbines lighter and more efficient, and may continue to be used increasingly if fatigue and strength properties can be improved. Prestressed concrete has been increasingly used for the material of the tower, but still requires much reinforcing steel to meet the strength requirement of the turbine. Additionally, step-up gearboxes are being increasingly replaced with variable speed generators, increasing the demand for magnetic materials in wind turbines.[46] In particular, this would require an increased supply of the rare earth metal neodymium.
Setting up a solar electric system is easy. The new source of power will integrate seamlessly with your existing utilities. Apart from settimg up the solar energy equipment, there will be no need to reconfigure or rewire your home. Our offerings include several pre-engineered, packaged systems for both residential and commercial applications, so there’s sure to be something that fits the needs of your home or business. Most solar panels last about 30 years, which means you will see the benefits of this new source of energy for decades to come.
The PV industry is beginning to adopt levelized cost of electricity (LCOE) as the unit of cost. The electrical energy generated is sold in units of kilowatt-hours (kWh). As a rule of thumb, and depending on the local insolation, 1 watt-peak of installed solar PV capacity generates about 1 to 2 kWh of electricity per year. This corresponds to a capacity factor of around 10–20%. The product of the local cost of electricity and the insolation determines the break even point for solar power. The International Conference on Solar Photovoltaic Investments, organized by EPIA, has estimated that PV systems will pay back their investors in 8 to 12 years.[73] As a result, since 2006 it has been economical for investors to install photovoltaics for free in return for a long term power purchase agreement. Fifty percent of commercial systems in the United States were installed in this manner in 2007 and over 90% by 2009.[74]
×