Conventional hydroelectricity works very well in conjunction with solar power, water can be held back or released from a reservoir behind a dam as required. Where a suitable river is not available, pumped-storage hydroelectricity uses solar power to pump water to a high reservoir on sunny days then the energy is recovered at night and in bad weather by releasing water via a hydroelectric plant to a low reservoir where the cycle can begin again.[109] However, this cycle can lose 20% of the energy to round trip inefficiencies, this plus the construction costs add to the expense of implementing high levels of solar power.
Another situation where a small wind turbine can make good sense is in case your province, state, or country has rebates or other incentives that make it cheap to install one (just keep ongoing maintenance and repair cost in mind as well). While we would like to advocate responsible spending of government money, the small wind industry needs many more customers to mature. It takes time and installation numbers for manufacturers to work out the bugs, make better turbines, and make them cheaper.
Research is also undertaken in this field of artificial photosynthesis. It involves the use of nanotechnology to store solar electromagnetic energy in chemical bonds, by splitting water to produce hydrogen fuel or then combining with carbon dioxide to make biopolymers such as methanol. Many large national and regional research projects on artificial photosynthesis are now trying to develop techniques integrating improved light capture, quantum coherence methods of electron transfer and cheap catalytic materials that operate under a variety of atmospheric conditions.[119] Senior researchers in the field have made the public policy case for a Global Project on Artificial Photosynthesis to address critical energy security and environmental sustainability issues.[120]
Enhanced geothermal systems (EGS) are a new type of geothermal power technologies that do not require natural convective hydrothermal resources. The vast majority of geothermal energy within drilling reach is in dry and non-porous rock.[161] EGS technologies "enhance" and/or create geothermal resources in this "hot dry rock (HDR)" through hydraulic stimulation. EGS and HDR technologies, such as hydrothermal geothermal, are expected to be baseload resources which produce power 24 hours a day like a fossil plant. Distinct from hydrothermal, HDR and EGS may be feasible anywhere in the world, depending on the economic limits of drill depth. Good locations are over deep granite covered by a thick (3–5 km) layer of insulating sediments which slow heat loss.[162] There are HDR and EGS systems currently being developed and tested in France, Australia, Japan, Germany, the U.S. and Switzerland. The largest EGS project in the world is a 25 megawatt demonstration plant currently being developed in the Cooper Basin, Australia. The Cooper Basin has the potential to generate 5,000–10,000 MW.
Although not permitted under the US National Electric Code, it is technically possible to have a “plug and play” PV microinverter. A recent review article found that careful system design would enable such systems to meet all technical, though not all safety requirements.[112] There are several companies selling plug and play solar systems available on the web, but there is a concern that if people install their own it will reduce the enormous employment advantage solar has over fossil fuels.[113]
Jump up ^ Schröder, K.-P.; Smith, R.C. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x. See also Palmer, J. (2008). "Hope dims that Earth will survive Sun's death". New Scientist. Retrieved 24 March 2008.
So does it make a difference what type of electrical generator we can use to produce wind power. The simple answer is both Yes and No, as it all depends upon the type of system and application you want. The low voltage DC output from a generator or older style dynamo can be used to charge batteries while the higher AC sinusoidal output from an alternator can be connected directly to the local grid.
The world of small wind turbines is much like the wild-west of a century ago: Anything goes, and no claim is too bold. Wind turbine manufacturers will even routinely make claims that are not supported by the Laws of Physics. Energy production claims are often exaggerated, as are power curves. In fact, this is the rule, not the exception. Those manufacturers that tell the truth are the exception. Many manufacturers have never tested their wind turbines under real-world conditions. Some have never tested their turbine before selling it to unsuspecting customers. We are not joking! Because we sell grid-tie inverters for small wind turbines we have a front-row seat when it comes to actual operation of turbines of many makes and models. It turns out that some do not work; they self-destruct within days, and sometimes run away and blow their inverter within seconds after being turned onfor  the first time (clearly nobody at the factory bothered to ever test it).

Green energy, however, utilizes energy sources that are readily available all over the world, including in rural and remote areas that don't otherwise have access to electricity. Advances in renewable energy technologies have lowered the cost of solar panels, wind turbines and other sources of green energy, placing the ability to produce electricity in the hands of the people rather than those of oil, gas, coal and utility companies.
There is no energy in the wind at those wind speeds, nothing to harvest for the turbine. While it may make you feel good to see your expensive yard toy spin, it is not doing anything meaningful in a breeze like that: To give you some idea, a wind turbine with a diameter of 6 meters (pretty large as small wind turbines go) can realistically produce just 120 Watt at 3.5 m/s wind speed. That same turbine would be rated at 6 kW (or more, see the next section), so energy production at cut-in really is just a drop in the bucket. What is more, due to the way grid-tie inverters work, you are about as likely to be loosing energy around cut-in wind speed to keep the inverter powered, as you are in making any energy, resulting in a net-loss of electricity production.
Adam Schultz, a senior policy analyst for the Oregon Department of Energy, says he’s more encouraged than ever about the prospects for renewables. Because the Pacific Northwest features large-scale hydropower plants built as part of the New Deal, energy already tends to be less expensive there than the U.S. average. But solar and wind power have “gotten cheaper over the last couple years to the point that I can’t even tell you what the costs are because costs have been dropping so rapidly,” Schultz says. “We have enough sunshine,” he says (presumably referring to the eastern part of the state), “so it’s just a matter of time.”
A parabolic trough consists of a linear parabolic reflector that concentrates light onto a receiver positioned along the reflector's focal line. The receiver is a tube positioned along the focal points of the linear parabolic mirror and is filled with a working fluid. The reflector is made to follow the sun during daylight hours by tracking along a single axis. Parabolic trough systems provide the best land-use factor of any solar technology.[13] The SEGS plants in California and Acciona's Nevada Solar One near Boulder City, Nevada are representatives of this technology.[14][15]
×