Most horizontal axis turbines have their rotors upwind of its supporting tower. Downwind machines have been built, because they don't need an additional mechanism for keeping them in line with the wind. In high winds, the blades can also be allowed to bend which reduces their swept area and thus their wind resistance. Despite these advantages, upwind designs are preferred, because the change in loading from the wind as each blade passes behind the supporting tower can cause damage to the turbine.
A typical house usually requires a home wind turbine with a 5 kW generating capacity to meet all its energy requirements. A turbine that offers this much power would have to be around 13 to 18 feet in diameter and positioned in an area where strong winds often pass through. There are also plenty of smaller, cheaper turbines, but these variants produce less power and are less reliable than their more expensive counterparts.
The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. Charles Fritts installed the world's first rooftop photovoltaic solar array, using 1%-efficient selenium cells, on a New York City roof in 1884.[28] However, development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum.[29] In 1974 it was estimated that only six private homes in all of North America were entirely heated or cooled by functional solar power systems.[30] The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies.[31][32] Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the United States (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer–ISE).[33] Between 1970 and 1983 installations of photovoltaic systems grew rapidly, but falling oil prices in the early 1980s moderated the growth of photovoltaics from 1984 to 1996.
At the end of 2014, worldwide PV capacity reached at least 177,000 megawatts. Photovoltaics grew fastest in China, followed by Japan and the United States, while Germany remains the world's largest overall producer of photovoltaic power, contributing about 7.0 percent to the overall electricity generation. Italy meets 7.9 percent of its electricity demands with photovoltaic power—the highest share worldwide.[119] For 2015, global cumulative capacity is forecasted to increase by more than 50 gigawatts (GW). By 2018, worldwide capacity is projected to reach as much as 430 gigawatts. This corresponds to a tripling within five years.[120] Solar power is forecasted to become the world's largest source of electricity by 2050, with solar photovoltaics and concentrated solar power contributing 16% and 11%, respectively. This requires an increase of installed PV capacity to 4,600 GW, of which more than half is expected to be deployed in China and India.[121]

Cleaner air and water: Burning fossil fuels releases greenhouse gases (GHG) into the atmosphere. GHG contribute to global climate change, rising sea levels and unpredictable weather patterns that can be costly in terms of human and economic losses. Burning fossil fuels also releases contaminants in to the air and water near the power generation source. Alternative energy sources can produce the same electricity in a greener way. You can shrink your carbon footprint, help curb climate change and reduce air and water pollution when you choose renewable electricity.
Dale Ross, the mayor of Georgetown, Texas, has a big smile, a big handshake and a big personality. In last year’s election, he won big, with 72 percent of the vote. The key to his success? “Without being too self-reflective,” he says, “I just like people.” He’s a Republican, and his priorities are party staples: go light on regulation, be tough on crime, keep taxes low. But the thing that is winning him international renown is straight out of the liberal playbook—green power. Thanks to his (big) advocacy, Georgetown (pop. 67,000) last year became the largest city in the United States to be powered entirely by renewable energy.
Airflows can be used to run wind turbines. Modern utility-scale wind turbines range from around 600 kW to 5 MW of rated power, although turbines with rated output of 1.5–3 MW have become the most common for commercial use. The largest generator capacity of a single installed onshore wind turbine reached 7.5 MW in 2015. The power available from the wind is a function of the cube of the wind speed, so as wind speed increases, power output increases up to the maximum output for the particular turbine.[42] Areas where winds are stronger and more constant, such as offshore and high altitude sites, are preferred locations for wind farms. Typically full load hours of wind turbines vary between 16 and 57 percent annually, but might be higher in particularly favorable offshore sites.[43]
You have read this far, and still want to install a wind turbine? Then it is time for a reality check: Most (some would say all) installed small wind turbines do abysmally poor in comparison with their energy production numbers as calculated above. That is the message from a number of studies, usually on behalf of governments that subsidize wind turbines. Do not just take our word for this, read it for yourself:
Dale Ross, the mayor of Georgetown, Texas, has a big smile, a big handshake and a big personality. In last year’s election, he won big, with 72 percent of the vote. The key to his success? “Without being too self-reflective,” he says, “I just like people.” He’s a Republican, and his priorities are party staples: go light on regulation, be tough on crime, keep taxes low. But the thing that is winning him international renown is straight out of the liberal playbook—green power. Thanks to his (big) advocacy, Georgetown (pop. 67,000) last year became the largest city in the United States to be powered entirely by renewable energy.
In 2014 global wind power capacity expanded 16% to 369,553 MW.[83] Yearly wind energy production is also growing rapidly and has reached around 4% of worldwide electricity usage,[84] 11.4% in the EU,[85] and it is widely used in Asia, and the United States. In 2015, worldwide installed photovoltaics capacity increased to 227 gigawatts (GW), sufficient to supply 1 percent of global electricity demands.[86] Solar thermal energy stations operate in the United States and Spain, and as of 2016, the largest of these is the 392 MW Ivanpah Solar Electric Generating System in California.[87][88] The world's largest geothermal power installation is The Geysers in California, with a rated capacity of 750 MW. Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18% of the country's automotive fuel. Ethanol fuel is also widely available in the United States.
Using 100% renewable energy was first suggested in a Science paper published in 1975 by Danish physicist Bent Sørensen.[150] It was followed by several other proposals, until in 1998 the first detailed analysis of scenarios with very high shares of renewables were published. These were followed by the first detailed 100% scenarios. In 2006 a PhD thesis was published by Czisch in which it was shown that in a 100% renewable scenario energy supply could match demand in every hour of the year in Europe and North Africa. In the same year Danish Energy professor Henrik Lund published a first paper[151] in which he addresses the optimal combination of renewables, which was followed by several other papers on the transition to 100% renewable energy in Denmark. Since then Lund has been publishing several papers on 100% renewable energy. After 2009 publications began to rise steeply, covering 100% scenarios for countries in Europe, America, Australia and other parts of the world.[152]
Setting up a solar electric system is easy. The new source of power will integrate seamlessly with your existing utilities. Apart from settimg up the solar energy equipment, there will be no need to reconfigure or rewire your home. Our offerings include several pre-engineered, packaged systems for both residential and commercial applications, so there’s sure to be something that fits the needs of your home or business. Most solar panels last about 30 years, which means you will see the benefits of this new source of energy for decades to come.
Besides the greening of fossil fuel and nuclear power plants, another option is the distribution and immediate use of power from solely renewable sources. In this set-up energy storage is again not necessary. For example, TREC has proposed to distribute solar power from the Sahara to Europe. Europe can distribute wind and ocean power to the Sahara and other countries. In this way, power is produced at any given time as at any point of the planet as the sun or the wind is up or ocean waves and currents are stirring. This option however is probably not possible in the short-term, as fossil fuel and nuclear power are still the main sources of energy on the mains electricity net and replacing them will not be possible overnight.
The Vestas V164 has a rated capacity of 8 MW,[79] later upgraded to 9.5 MW.[80][81] The wind turbine has an overall height of 220 m (722 ft), a diameter of 164 m (538 ft), is for offshore use, and is the world's largest-capacity wind turbine since its introduction in 2014. The conventional drive train consist of a main gearbox and a medium speed PM generator. Prototype installed in 2014 at the National Test Center Denmark nearby Østerild. Series production began end of 2015.
Join GTM at the upcoming Power & Renewables Summit! We'll cover how decarbonization, sector electrification and shifting regulatory developments will transform power markets over the next 10-to-20 years. We have already confirmed senior executives with FERC, Exelon, ERCOT, PJM, APS, Microsoft, Dell, CPS Energy, NRG, CohnReznick, Los Angeles Department of Water & Power and many more. Learn more here.
Globally, the long-term technical potential of wind energy is believed to be five times total current global energy production, or 40 times current electricity demand, assuming all practical barriers needed were overcome. This would require wind turbines to be installed over large areas, particularly in areas of higher wind resources, such as offshore. As offshore wind speeds average ~90% greater than that of land, so offshore resources can contribute substantially more energy than land stationed turbines.[44] In 2014 global wind generation was 706 terawatt-hours or 3% of the worlds total electricity.[45]
A recent UK Government document states that "projects are generally more likely to succeed if they have broad public support and the consent of local communities. This means giving communities both a say and a stake".[194] In countries such as Germany and Denmark many renewable projects are owned by communities, particularly through cooperative structures, and contribute significantly to overall levels of renewable energy deployment.[195][196]
The US National Renewable Energy Laboratory (NREL), in harmonizing the disparate estimates of life-cycle GHG emissions for solar PV, found that the most critical parameter was the solar insolation of the site: GHG emissions factors for PV solar are inversely proportional to insolation.[125] For a site with insolation of 1700 kWh/m2/year, typical of southern Europe, NREL researchers estimated GHG emissions of 45 gCO2e/kWh. Using the same assumptions, at Phoenix, USA, with insolation of 2400 kWh/m2/year, the GHG emissions factor would be reduced to 32 g of CO2e/kWh.[126]
Nuclear power. After coal, the next largest source of our electricity is nuclear power. While nuclear plants don't cause air pollution, they do create radioactive waste, which must be stored for thousands of years. As accidents at Three Mile Island and Chernobyl proved, nuclear plants also carry the risk of catastrophic failure. And nuclear power can be very expensive.
Interest in recycling blades varies in different markets and depends on the waste legislation and local economics. A challenge in recycling blades is related to the composite material, which is made of a thermosetting matrix and glass fibers or a combination of glass and carbon fibers. Thermosetting matrix cannot be remolded to form new composites. So the options are either to reuse the blade and the composite material elements as they are found in the blade or to transform the composite material into a new source of material. In Germany, wind turbine blades are commercially recycled as part of an alternative fuel mix for a cement factory.
Geothermal energy is produced by tapping into the thermal energy created and stored within the earth. It arises from the radioactive decay of an isotope of potassium and other elements found in the Earth's crust.[144] Geothermal energy can be obtained by drilling into the ground, very similar to oil exploration, and then it is carried by a heat-transfer fluid (e.g. water, brine or steam).[144] Geothermal systems that are mainly dominated by water have the potential to provide greater benefits to the system and will generate more power.[145] Within these liquid-dominated systems, there are possible concerns of subsidence and contamination of ground-water resources. Therefore, protection of ground-water resources is necessary in these systems. This means that careful reservoir production and engineering is necessary in liquid-dominated geothermal reservoir systems.[145] Geothermal energy is considered sustainable because that thermal energy is constantly replenished.[146] However, the science of geothermal energy generation is still young and developing economic viability. Several entities, such as the National Renewable Energy Laboratory[147] and Sandia National Laboratories[148] are conducting research toward the goal of establishing a proven science around geothermal energy. The International Centre for Geothermal Research (IGC), a German geosciences research organization, is largely focused on geothermal energy development research.[149]

Climate change concerns coupled with high oil prices and increasing government support are driving increasing rates of investment in the sustainable energy industries, according to a trend analysis from the United Nations Environment Programme. According to UNEP, global investment in sustainable energy in 2007 was higher than previous levels, with $148 billion of new money raised in 2007, an increase of 60% over 2006. Total financial transactions in sustainable energy, including acquisition activity, was $204 billion.[64]
Thermal storage technologies allow heat or cold to be stored for periods of time ranging from hours or overnight to interseasonal, and can involve storage of sensible energy (i.e. by changing the temperature of a medium) or latent energy (i.e. through phase changes of a medium, such between water and slush or ice). Short-term thermal storages can be used for peak-shaving in district heating or electrical distribution systems. Kinds of renewable or alternative energy sources that can be enabled include natural energy (e.g. collected via solar-thermal collectors, or dry cooling towers used to collect winter's cold), waste energy (e.g. from HVAC equipment, industrial processes or power plants), or surplus energy (e.g. as seasonally from hydropower projects or intermittently from wind farms). The Drake Landing Solar Community (Alberta, Canada) is illustrative. borehole thermal energy storage allows the community to get 97% of its year-round heat from solar collectors on the garage roofs, which most of the heat collected in summer.[58][59] Types of storages for sensible energy include insulated tanks, borehole clusters in substrates ranging from gravel to bedrock, deep aquifers, or shallow lined pits that are insulated on top. Some types of storage are capable of storing heat or cold between opposing seasons (particularly if very large), and some storage applications require inclusion of a heat pump. Latent heat is typically stored in ice tanks or what are called phase-change materials (PCMs).

Energy engineering Oil refinery Fossil-fuel power station Cogeneration Integrated gasification combined cycle Electric power Nuclear power Nuclear power plant Radioisotope thermoelectric generator Solar power Photovoltaic system Concentrated solar power Solar thermal energy Solar power tower Solar furnace Wind power Wind farm High-altitude wind power Geothermal power Hydropower Hydroelectricity Wave farm Tidal power Biomass


What? You are still reading? If we did not talk you out of a wind turbine by now there may still be hope! There certainly are situations where a small wind turbine makes perfect sense: If you are off-grid you should definitely consider adding a wind turbine. Wind and solar tend to complement each other beautifully; the sunny days tend to be not very windy, while the windy days tend to have little sun. Wind turbines generally produce most energy in the winter, when solar panels fall short.

When power flows from the generator to your house, electrons get mixed together on the wires. You can't specify which electrons you get, but you can make sure that your money goes to support clean, sustainable  generators, which has the effect of making the whole system "greener". To do this, you will need to look closely at utility marketing claims and materials. To ensure that the claims are truthful, many states now require disclosure labels, just like the nutrition labels on food packages. But don't hesitate to ask for more information directly from potential suppliers, including the percentage of power derived from each fuel source and the level of each of the above emissions compared with the regional average.
Subsequently, Spain, Italy, Greece—that enjoyed an early success with domestic solar-thermal installations for hot water needs—and France introduced feed-in tariffs. None have replicated the programmed decrease of FIT in new contracts though, making the German incentive relatively less and less attractive compared to other countries. The French and Greek FIT offer a high premium (EUR 0.55/kWh) for building integrated systems. California, Greece, France and Italy have 30–50% more insolation than Germany making them financially more attractive. The Greek domestic "solar roof" programme (adopted in June 2009 for installations up to 10 kW) has internal rates of return of 10–15% at current commercial installation costs, which, furthermore, is tax free.
Rated power of a wind turbine may not be quite as meaningless as cut-in wind speed, though its use is limited. It could have some utility to quickly compare, or get a feel for, the size of the wind turbine, but only if those rated power numbers were taken at the same rated wind speed, and if the manufacturer is giving you a realistic number (many inflate rated power). A much better measure of turbine size is, simply, their diameter. As shown above it is by far the best predictor for power output.
Since you are working hard to read this rather lengthy article, here is some entertainment. The ‘intermission’ if you like. So, put your feet up and enjoy the next picture: It’s a prime example of much that is wrong with the small wind world. The fact that an installer would even consider installing in a place like that. Customers that are too uninformed to know better (and their installer clearly is not interested in educating them). Turbine manufacturers that deliver standard towers that are much too short to be effective; this tower plus turbine is just 23 feet tall! Then there is the claim by the manufacturer (dutifully parroted by the installer) that this turbine will offset “up to 30%” of their electricity bill. The last one is not really a lie I suppose: If in reality it offsets just 2% of the owners bill, technically that still falls within that “up to 30%”…
Index of solar energy articles List of concentrating solar thermal power companies List of photovoltaics companies List of photovoltaic power stations List of pioneering solar buildings List of rooftop photovoltaic installations List of solar car teams List of solar powered products List of solar thermal power stations People associated with solar power
A typical home uses approximately 10,932 kilowatt-hours (kWh) of electricity per year (about 911 kWh per month).[1] Depending on the average wind speed in the area, a wind turbine rated in the range of 5 to 15 kW would be required to make a significant contribution to this demand. A 1.5-kW wind turbine will meet the needs of a home requiring 300 kWh per month in a location with a 14 MPH (6.26 meters per second) annual average wind speed.[2] The manufacturer, dealer, or installer can provide you with the expected annual energy output of the turbine as a function of annual average wind speed. The manufacturer will also provide information about any maximum wind speeds at which the turbine is designed to operate safely. Most turbines have automatic overspeed-governing systems to keep the rotor from spinning out of control in extremely high winds.
Renewable energy variability is a problem for corporate buyers. But what is undesirable to buyers is attractive for insurance companies, whose core business revolves around managing weather-related risks. VFAs sit on top of a new or existing PPA and are effectively designed to pay the corporate buyer when they’re getting less renewable power than they contracted for, and give money to the insurer when there’s more.

Single small turbines below 100 kilowatts are used for homes, telecommunications dishes, or water pumping. Small turbines are sometimes used in connection with diesel generators, batteries, and photovoltaic systems. These systems are called hybrid wind systems and are typically used in remote, off-grid locations where a connection to the utility grid is not available.
Small wind turbines may be used for a variety of applications including on- or off-grid residences, telecom towers, offshore platforms, rural schools and clinics, remote monitoring and other purposes that require energy where there is no electric grid, or where the grid is unstable. Small wind turbines may be as small as a fifty-watt generator for boat or caravan use. Hybrid solar and wind powered units are increasingly being used for traffic signage, particularly in rural locations, as they avoid the need to lay long cables from the nearest mains connection point.[60] The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) defines small wind turbines as those smaller than or equal to 100 kilowatts.[61] Small units often have direct drive generators, direct current output, aeroelastic blades, lifetime bearings and use a vane to point into the wind.
Solar power is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV), indirectly using concentrated solar power, or a combination. Concentrated solar power systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Photovoltaic cells convert light into an electric current using the photovoltaic effect.[1]
×