For several years, worldwide growth of solar PV was driven by European deployment, but has since shifted to Asia, especially China and Japan, and to a growing number of countries and regions all over the world, including, but not limited to, Australia, Canada, Chile, India, Israel, Mexico, South Africa, South Korea, Thailand, and the United States.

Efficiency can decrease slightly over time, one of the main reasons being dust and insect carcasses on the blades which alters the aerodynamic profile and essentially reduces the lift to drag ratio of the airfoil. Analysis of 3128 wind turbines older than 10 years in Denmark showed that half of the turbines had no decrease, while the other half saw a production decrease of 1.2% per year.[19] Ice accretion on turbine blades has also been found to greatly reduce the efficiency of wind turbines, which is a common challenge in cold climates where in-cloud icing and freezing rain events occur.[20] Vertical turbine designs have much lower efficiency than standard horizontal designs.[21]
Prior to the development of coal in the mid 19th century, nearly all energy used was renewable. Almost without a doubt the oldest known use of renewable energy, in the form of traditional biomass to fuel fires, dates from 790,000 years ago. Use of biomass for fire did not become commonplace until many hundreds of thousands of years later, sometime between 200,000 and 400,000 years ago.[31] Probably the second oldest usage of renewable energy is harnessing the wind in order to drive ships over water. This practice can be traced back some 7000 years, to ships in the Persian Gulf[32] and on the Nile.[33] Moving into the time of recorded history, the primary sources of traditional renewable energy were human labor, animal power, water power, wind, in grain crushing windmills,[32] and firewood, a traditional biomass. A graph of energy use in the United States up until 1900 shows oil and natural gas with about the same importance in 1900 as wind and solar played in 2010.
VAWT type turbines have no inherent advantage over HAWT type turbines. There, we have said it! VAWTs do not do any better in turbulent wind than HAWTs. Leaving the Savonius type VAWTs out (the type that looks like an oil drum cut in half – they have very poor efficiency anyway), both horizontal and vertical type turbines rely on an airfoil, a wing, to produce power. Airfoils simply do not work well in turbulent air; the wind needs to hit them at just the right angle and eddies wreak havoc. Couple that with the insistence of vertical axis turbine manufacturers to install their devices on very short towers or rooftops, and you get the picture. It will not work.
The primary obstacle that is preventing the large scale implementation of solar powered energy generation is the inefficiency of current solar technology. Currently, photovoltaic (PV) panels only have the ability to convert around 24% of the sunlight that hits them into electricity.[125] At this rate, solar energy still holds many challenges for widespread implementation, but steady progress has been made in reducing manufacturing cost and increasing photovoltaic efficiency. Both Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), have heavily funded solar research programs. The NREL solar program has a budget of around $75 million [126] and develops research projects in the areas of photovoltaic (PV) technology, solar thermal energy, and solar radiation.[127] The budget for Sandia’s solar division is unknown, however it accounts for a significant percentage of the laboratory’s $2.4 billion budget.[128] Several academic programs have focused on solar research in recent years. The Solar Energy Research Center (SERC) at University of North Carolina (UNC) has the sole purpose of developing cost effective solar technology. In 2008, researchers at Massachusetts Institute of Technology (MIT) developed a method to store solar energy by using it to produce hydrogen fuel from water.[129] Such research is targeted at addressing the obstacle that solar development faces of storing energy for use during nighttime hours when the sun is not shining. In February 2012, North Carolina-based Semprius Inc., a solar development company backed by German corporation Siemens, announced that they had developed the world’s most efficient solar panel. The company claims that the prototype converts 33.9% of the sunlight that hits it to electricity, more than double the previous high-end conversion rate.[130] Major projects on artificial photosynthesis or solar fuels are also under way in many developed nations.[131]
Champion Energy is able to provide green power through the purchase of an environmental trading commodity known as a renewable energy credit (REC). RECs are created when a qualified renewable energy generation facility (like a wind farm or solar array) produces electricity. They represent the added value in terms of renewable energy’s environmental benefits and costs when compared to conventional means of producing power. We buy RECs from wind farms contributing electricity to your local grid, then ‘retire’ those RECs in direct proportion to the amount of energy you consume. In this way, you can be confident that every kWh you use is helping to promote and support the continued development of green energy infrastructure in your area.
Taken together, the generation and distribution of electric power in the United States is an astonishingly complex undertaking. Utilities may generate their own power or buy it from other utilities; that power travels over a grid of transformers and high- and low-voltage lines to your house. Ownership of utilities varies from nonprofits to cooperatives to for-profits. Federal regulators ultimately oversee the grid. Amazingly, when you flip a switch, electricity is there.

List of books about renewable energy List of countries by electricity production from renewable sources List of geothermal power stations Lists of hydroelectric power stations List of largest hydroelectric power stations List of people associated with renewable energy List of renewable energy companies by stock exchange List of renewable energy organizations List of renewable energy topics by country List of U.S. states by electricity production from renewable sources
In Denmark by 1900, there were about 2500 windmills for mechanical loads such as pumps and mills, producing an estimated combined peak power of about 30 (MW). The largest machines were on 24-meter (79 ft) towers with four-bladed 23-meter (75 ft) diameter rotors. By 1908 there were 72 wind-driven electric generators operating in the United States from 5 kW to 25 kW. Around the time of World War I, American windmill makers were producing 100,000 farm windmills each year, mostly for water-pumping.[9]
In 2007, General Electric's Chief Engineer predicted grid parity without subsidies in sunny parts of the United States by around 2015; other companies predicted an earlier date:[85] the cost of solar power will be below grid parity for more than half of residential customers and 10% of commercial customers in the OECD, as long as grid electricity prices do not decrease through 2010.[81]
A turbine that produces around 5 kW worth of energy can produce approximately 8,000 kWh per year, assuming there are decent winds to power it. Given ideal conditions, you will be able to recoup your investment in three to five years, depending on your monthly energy consumption and other related factors. If, however, your property doesn’t get enough wind then it may take a little more time to recover your initial investment.
The generator, which is approximately 34% of the wind turbine cost, includes the electrical generator,[38][39] the control electronics, and most likely a gear box (e.g. planetary gear box),[40] adjustable-speed drive or continuously variable transmission[41] component for converting the low-speed incoming rotation to high-speed rotation suitable for generating electricity.
These residential renewable energy plans are sourced from 100% wind power generation. In addition, a Green Power plan lets you lock in a secure, fixed energy rate with the same key benefits as Champion Energy’s traditional electricity plans. This is an ideal choice for customers looking for ways to preserve the environment, conserve natural resources and promote the growth of renewable energy infrastructure.

†Offer is available to Texas residential customers who enroll using the Promotion Code “NIGHTSFREE”. Plan bills a monthly Base Charge, an Energy Charge, and passes through Utility Transmission and Distribution delivery charges. Energy Charges for usage consumed between 9pm and 7am each day is credited back on your bill. The utility charges, including delivery charges for night time hours, are passed through at cost and aggregated on your bill. See Electricity Facts Label for details.
The PV industry is beginning to adopt levelized cost of electricity (LCOE) as the unit of cost. The electrical energy generated is sold in units of kilowatt-hours (kWh). As a rule of thumb, and depending on the local insolation, 1 watt-peak of installed solar PV capacity generates about 1 to 2 kWh of electricity per year. This corresponds to a capacity factor of around 10–20%. The product of the local cost of electricity and the insolation determines the break even point for solar power. The International Conference on Solar Photovoltaic Investments, organized by EPIA, has estimated that PV systems will pay back their investors in 8 to 12 years.[73] As a result, since 2006 it has been economical for investors to install photovoltaics for free in return for a long term power purchase agreement. Fifty percent of commercial systems in the United States were installed in this manner in 2007 and over 90% by 2009.[74]
Between maintenance and repairs, it would greatly help and keep your cost down if you can do some of the work yourself: Being able to safely tilt the turbine tower up or down will save you money. Understanding how the turbine works, how to stop it safely, how to trouble-shoot at least the minor issues can keep you in the black. We understand that installing a wind turbine is not for everyone. In fact, towers are dangerous, and for a good installation the devil is in the details. An experienced installer can make a real difference in putting up a turbine that will work better, and be more reliable over time. We really encourage you to have a professional installer to do the initial installation. However, throwing up your hands and calling your installer for routine maintenance, or every time there is a minor issue, will likely make you an unhappy wind turbine owner (even if it is your installer’s dream).
Run-of-the-river hydroelectricity plants derive energy from rivers without the creation of a large reservoir. The water is typically conveyed along the side of the river valley (using channels, pipes and/or tunnels) until it is high above the valley floor, whereupon it can allowed to fall through a penstock to drive a turbine. This style of generation may still produce a large amount of electricity, such as the Chief Joseph Dam on the Columbia river in the United States.
In terms of ocean energy, another third-generation technology, Portugal has the world's first commercial wave farm, the Aguçadora Wave Park, under construction in 2007. The farm will initially use three Pelamis P-750 machines generating 2.25 MW.[44][45] and costs are put at 8.5 million euro. Subject to successful operation, a further 70 million euro is likely to be invested before 2009 on a further 28 machines to generate 525 MW.[46] Funding for a wave farm in Scotland was announced in February, 2007 by the Scottish Executive, at a cost of over 4 million pounds, as part of a £13 million funding packages for ocean power in Scotland. The farm will be the world's largest with a capacity of 3 MW generated by four Pelamis machines.[47] (see also Wave farm).
Many companies are taking the push for 100 percent renewables seriously because they see it as good business — not just today, but for the long term. At the time of publication, 152 companies of various sizes have made a commitment to go 100 percent renewable through RE100. Big names like Apple and Google have already met their targets, while other companies are looking out further into the future, some as far as 2040. That timeline indicates companies are looking beyond today’s prices and present-day marketing benefits.
Materials that are typically used for the rotor blades in wind turbines are composites, as they tend to have a high stiffness, high strength, high fatigue resistance, and low weight.[46] Typical resins used for these composites include polyester and epoxy, while glass and carbon fibers have been used for the reinforcing material.[47] Construction may use manual layup techniques or composite resin injection molding. As the price of glass fibers is only about one tenth the price of carbon fiber, glass fiber is still dominant.
Around the world many sub-national governments - regions, states and provinces - have aggressively pursued sustainable energy investments. In the United States, California's leadership in renewable energy was recognised by The Climate Group when it awarded former Governor Arnold Schwarzenegger its inaugural award for international climate leadership in Copenhagen in 2009.[156] In Australia, the state of South Australia - under the leadership of former Premier Mike Rann - has led the way with wind power comprising 26% of its electricity generation by the end of 2011, edging out coal fired generation for the first time.[156] South Australia also has had the highest take-up per capita of household solar panels in Australia following the Rann Government's introduction of solar feed-in laws and educative campaign involving the installation of solar photovoltaic installations on the roofs of prominent public buildings, including the parliament, museum, airport and Adelaide Showgrounds pavilion and schools.[157] Rann, Australia's first climate change minister, passed legislation in 2006 setting targets for renewable energy and emissions cuts, the first legislation in Australia to do so.[158]
Some of the second-generation renewables, such as wind power, have high potential and have already realised relatively low production costs. At the end of 2008, worldwide wind farm capacity was 120,791 megawatts (MW), representing an increase of 28.8 percent during the year,[30] and wind power produced some 1.3% of global electricity consumption.[31] Wind power accounts for approximately 20% of electricity use in Denmark, 9% in Spain, and 7% in Germany.[32][33] However, it may be difficult to site wind turbines in some areas for aesthetic or environmental reasons, and it may be difficult to integrate wind power into electricity grids in some cases.[10]
The Nomad 20 Solar Panel combines highly efficient The Nomad 20 Solar Panel combines highly efficient monocrystalline technology in a foldable portable plug-and-play form. With a built-in junction box and innovative smart chip the Nomad 20 can directly charge handheld USB and 12-Volt devices directly from the sun just as fast as the wall. Combine the Nomad 20 ...  More + Product Details Close
Renewable energy resources exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency is resulting in significant energy security, climate change mitigation, and economic benefits.[8] The results of a recent review of the literature[9] concluded that as greenhouse gas (GHG) emitters begin to be held liable for damages resulting from GHG emissions resulting in climate change, a high value for liability mitigation would provide powerful incentives for deployment of renewable energy technologies. In international public opinion surveys there is strong support for promoting renewable sources such as solar power and wind power.[10] At the national level, at least 30 nations around the world already have renewable energy contributing more than 20 percent of energy supply. National renewable energy markets are projected to continue to grow strongly in the coming decade and beyond.[11] Some places and at least two countries, Iceland and Norway generate all their electricity using renewable energy already, and many other countries have the set a goal to reach 100% renewable energy in the future. For example, in Denmark the government decided to switch the total energy supply (electricity, mobility and heating/cooling) to 100% renewable energy by 2050.[12]
Julia Pyper is a Senior Editor at Greentech Media covering clean energy policy, the solar industry, grid edge technologies and electric mobility. She previously reported for E&E Publishing, and has covered clean energy and climate change issues across the U.S. and abroad, including in Haiti, Israel and the Maldives. Julia holds degrees from McGill and Columbia Universities. Find her on Twitter @JMPyper.
Green Pricing is an optional utility service for customers who want to help expand the production and distribution of renewable energy technologies. With green pricing, you do not have to change your electricity provider. Instead, customers choose to pay a premium on their electricity bill to cover the extra cost of purchasing clean, sustainable energy. As of March 2006, more than 600 utilities, electricity providers in 36 states offer a green pricing option.
Renewable energy variability is a problem for corporate buyers. But what is undesirable to buyers is attractive for insurance companies, whose core business revolves around managing weather-related risks. VFAs sit on top of a new or existing PPA and are effectively designed to pay the corporate buyer when they’re getting less renewable power than they contracted for, and give money to the insurer when there’s more.
Biomass can be converted to other usable forms of energy such as methane gas or transportation fuels such as ethanol and biodiesel. Rotting garbage, and agricultural and human waste, all release methane gas – also called landfill gas or biogas. Crops, such as corn and sugarcane, can be fermented to produce the transportation fuel, ethanol. Biodiesel, another transportation fuel, can be produced from left-over food products such as vegetable oils and animal fats.[69] Also, biomass to liquids (BTLs) and cellulosic ethanol are still under research.[70][71] There is a great deal of research involving algal fuel or algae-derived biomass due to the fact that it's a non-food resource and can be produced at rates 5 to 10 times those of other types of land-based agriculture, such as corn and soy. Once harvested, it can be fermented to produce biofuels such as ethanol, butanol, and methane, as well as biodiesel and hydrogen. The biomass used for electricity generation varies by region. Forest by-products, such as wood residues, are common in the United States. Agricultural waste is common in Mauritius (sugar cane residue) and Southeast Asia (rice husks). Animal husbandry residues, such as poultry litter, are common in the United Kingdom.[72]
The advantage of this approach in the United States is that many states offer incentives to offset the cost of installation of a renewable energy system. In California, Massachusetts and several other U.S. states, a new approach to community energy supply called Community Choice Aggregation has provided communities with the means to solicit a competitive electricity supplier and use municipal revenue bonds to finance development of local green energy resources. Individuals are usually assured that the electricity they are using is actually produced from a green energy source that they control. Once the system is paid for, the owner of a renewable energy system will be producing their own renewable electricity for essentially no cost and can sell the excess to the local utility at a profit.

The home wind Generator systems are designed for reliable power output for the next 30 years or so. With every price increase of the utility company power your investment gets better all the time. Utility costs are rising all over and will accelerate over the next few years. We expect the cost of electricity to rise and double over Obamas term in office due to cap and trade and increased regulation and market pressure.

Subsequently, Spain, Italy, Greece—that enjoyed an early success with domestic solar-thermal installations for hot water needs—and France introduced feed-in tariffs. None have replicated the programmed decrease of FIT in new contracts though, making the German incentive relatively less and less attractive compared to other countries. The French and Greek FIT offer a high premium (EUR 0.55/kWh) for building integrated systems. California, Greece, France and Italy have 30–50% more insolation than Germany making them financially more attractive. The Greek domestic "solar roof" programme (adopted in June 2009 for installations up to 10 kW) has internal rates of return of 10–15% at current commercial installation costs, which, furthermore, is tax free.
Although not permitted under the US National Electric Code, it is technically possible to have a “plug and play” PV microinverter. A recent review article found that careful system design would enable such systems to meet all technical, though not all safety requirements.[112] There are several companies selling plug and play solar systems available on the web, but there is a concern that if people install their own it will reduce the enormous employment advantage solar has over fossil fuels.[113]
Jump up ^ Schröder, K.-P.; Smith, R.C. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x. See also Palmer, J. (2008). "Hope dims that Earth will survive Sun's death". New Scientist. Retrieved 24 March 2008.

You should know that we at Solacity love wind turbines! Can’t get enough of ’em. Where the neighbours see life-threatening, blade-shedding, bat-and-bird killing, noise-making contraptions, we see poetry in motion. Kinetic art at its finest; combining form, movement, and function all in one. We could stare at them for hours, while contemplating the meaning of life, the universe, and everything… and have… until the beer ran out. Despite all the information presented here, we are big fans of small wind turbines. This page is about informing you, so you can make a decision based on fact and not marketing hype.
A hybrid system combines (C)PV and CSP with one another or with other forms of generation such as diesel, wind and biogas. The combined form of generation may enable the system to modulate power output as a function of demand or at least reduce the fluctuating nature of solar power and the consumption of non renewable fuel. Hybrid systems are most often found on islands.
×