The blades for the wind generator are repurposed from a vehicle fan clutch. To attach the blades to the alternator, you can weld the fan clutch hub directly to the alternator hub — just make certain the fan is perfectly in line with the alternator shaft. Also, make sure the alternator’s built-in wire plug-ins are located on what will be the bottom of the generator. If you don’t have access to a welder, you can connect the fan clutch to the alternator using the following materials:

The New Zealand Parliamentary Commissioner for the Environment found that the solar PV would have little impact on the country's greenhouse gas emissions. The country already generates 80 percent of its electricity from renewable resources (primarily hydroelectricity and geothermal) and national electricity usage peaks on winter evenings whereas solar generation peaks on summer afternoons, meaning a large uptake of solar PV would end up displacing other renewable generators before fossil-fueled power plants.[127]
The first three are active solar systems, which use mechanical or electrical devices that convert the sun's heat or light to another form of usable energy. Passive solar buildings are designed and oriented to collect, store, and distribute the heat energy from sunlight to maintain the comfort of the occupants without the use of moving parts or electronics.

As local wind speed increases, so does the power output. Since this type of generator uses wind as 'fuel', it is important to choose an appropriate site for mounting the turbine. The ideal location for a wind generator is 20 feet above any surrounding object within a 250-foot radius. Wind speed increases with height above ground, so a taller mast can provide significant gains in energy production.
The first electricity-generating wind turbine was a battery charging machine installed in July 1887 by Scottish academic James Blyth to light his holiday home in Marykirk, Scotland.[7] Some months later American inventor Charles F. Brush was able to build the first automatically operated wind turbine after consulting local University professors and colleagues Jacob S. Gibbs and Brinsley Coleberd and successfully getting the blueprints peer-reviewed for electricity production in Cleveland, Ohio.[7] Although Blyth's turbine was considered uneconomical in the United Kingdom,[7] electricity generation by wind turbines was more cost effective in countries with widely scattered populations.[6]

Solar thermal power stations have been successfully operating in California commercially since the late 1980s, including the largest solar power plant of any kind, the 350 MW Solar Energy Generating Systems. Nevada Solar One is another 64MW plant which has recently opened.[34] Other parabolic trough power plants being proposed are two 50MW plants in Spain, and a 100MW plant in Israel.[35]
Turbines used in residential applications can range in size from 400 Watts to 100 kW (100 kW for very large loads), depending on the amount of electricity you want to generate. For residential applications, you should establish an energy budget and see whether financial incentives are available. This information will help determine the turbine size you will need. Because energy efficiency is usually less expensive than energy production, making your house more energy efficient will probably be more cost effective and will reduce the size of the wind turbine you need (see How Can I Make My Home More Energy Efficient?). Wind turbine manufacturers, dealers, and installers can help you size your system based on your electricity needs and the specifics of your local wind resource and micro-siting.

A solar power tower uses an array of tracking reflectors (heliostats) to concentrate light on a central receiver atop a tower. Power towers can achieve higher (thermal-to-electricity conversion) efficiency than linear tracking CSP schemes and better energy storage capability than dish stirling technologies.[14] The PS10 Solar Power Plant and PS20 solar power plant are examples of this technology.
In 2010, the United States led the world in geothermal electricity production with 3,086 MW of installed capacity from 77 power plants;[132] the largest group of geothermal power plants in the world is located at The Geysers, a geothermal field in California.[133] The Philippines follows the US as the second highest producer of geothermal power in the world, with 1,904 MW of capacity online; geothermal power makes up approximately 18% of the country's electricity generation.[132]
The most significant barriers to the widespread implementation of large-scale renewable energy and low carbon energy strategies are primarily political and not technological. According to the 2013 Post Carbon Pathways report, which reviewed many international studies, the key roadblocks are: climate change denial, the fossil fuels lobby, political inaction, unsustainable energy consumption, outdated energy infrastructure, and financial constraints.[155]
The use of a gearbox allows for better matching of the generator speed to that of the turbine but the disadvantage of using a gearbox is that as a mechanical component it is subjected to wear and tear reducing the efficiency of the system. Direct drive however may be more simple and efficient, but the generators rotor shaft and bearings are subjected to the full weight and rotational force of the rotor blades.
The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. Charles Fritts installed the world's first rooftop photovoltaic solar array, using 1%-efficient selenium cells, on a New York City roof in 1884.[28] However, development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum.[29] In 1974 it was estimated that only six private homes in all of North America were entirely heated or cooled by functional solar power systems.[30] The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies.[31][32] Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the United States (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer–ISE).[33] Between 1970 and 1983 installations of photovoltaic systems grew rapidly, but falling oil prices in the early 1980s moderated the growth of photovoltaics from 1984 to 1996.

According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment. Cedric Philibert, senior analyst in the renewable energy division at the IEA said: "Photovoltaic and solar-thermal plants may meet most of the world's demand for electricity by 2060 – and half of all energy needs – with wind, hydropower and biomass plants supplying much of the remaining generation". "Photovoltaic and concentrated solar power together can become the major source of electricity", Philibert said.[25]
Smart grid refers to a class of technology people are using to bring utility electricity delivery systems into the 21st century, using computer-based remote control and automation.[65] These systems are made possible by two-way communication technology and computer processing that has been used for decades in other industries. They are beginning to be used on electricity networks, from the power plants and wind farms all the way to the consumers of electricity in homes and businesses. They offer many benefits to utilities and consumers—mostly seen in big improvements in energy efficiency on the electricity grid and in the energy users’ homes and offices.[65]
There have been "not in my back yard" (NIMBY) concerns relating to the visual and other impacts of some wind farms, with local residents sometimes fighting or blocking construction.[192] In the United States, the Massachusetts Cape Wind project was delayed for years partly because of aesthetic concerns. However, residents in other areas have been more positive. According to a town councilor, the overwhelming majority of locals believe that the Ardrossan Wind Farm in Scotland has enhanced the area.[193]
With advanced technology being developed, cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the United States and in Brazil. The energy costs for producing bio-ethanol are almost equal to, the energy yields from bio-ethanol. However, according to the European Environment Agency, biofuels do not address global warming concerns.[75] Biodiesel is made from vegetable oils, animal fats or recycled greases. It can be used as a fuel for vehicles in its pure form, or more commonly as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe. Biofuels provided 2.7% of the world's transport fuel in 2010.[76]
Green energy is commonly thought of in the context of electricity, mechanical power, heating and cogeneration. Consumers, businesses, and organizations may purchase green energy in order to support further development, help reduce the environmental impacts of conventional electricity generation, and increase their nation’s energy independence. Renewable energy certificates (green certificates or green tags) have been one way for consumers and businesses to support green energy.
In conclusion, I would say that however great the scientific importance of this discovery may be, its practical value will be no less obvious when we reflect that the supply of solar energy is both without limit and without cost, and that it will continue to pour down upon us for countless ages after all the coal deposits of the earth have been exhausted and forgotten.[36]

A 1.5 (MW) wind turbine of a type frequently seen in the United States has a tower 80 meters (260 ft) high. The rotor assembly (blades and hub) weighs 22,000 kilograms (48,000 lb). The nacelle, which contains the generator, weighs 52,000 kilograms (115,000 lb). The concrete base for the tower is constructed using 26,000 kilograms (58,000 lb) reinforcing steel and contains 190 cubic meters (250 cu yd) of concrete. The base is 15 meters (50 ft) in diameter and 2.4 meters (8 ft) thick near the center.[43]
Specifications: Colors: Red Rated power: 600W Nominal voltage: 12V Start-up wind speed: 2m/s Rated wind speed: 13m/s Survival wind speed: 45m/s Package weight: 13kg Wind wheel diameter: 0.9M Number of blades: 5 Blades material: Nylon fiber Nylon fiber: Three phase ac permanent magnet generator/Maglev generatorsThree phase ac permanent magnet generator/Maglev generators Controller system: Electromagnetic Speed regulation: The wind Angle automatically Working temperature: -40℃~80℃ Features: 1. Low start-up speed, high wind power utilization, light, cute, low vibration. 2.Simple to install and maintain. 3.For home use, For monitoring use, For boat / marine use, For wind solar hybrid streetlight use. Package: 1 x Wind Turbine Generators(with controller) 1 x Stainless steel.
Any solar PV system that’s tied to the grid will use a bi-directional meter. When you use electricity from the grid, you’ll see your meter move forward. But when your solar PV system produces electricity, any excess will go back into the grid and your meter will move backward. This is called “net metering,” and the utility company will credit your bill for the excess electricity generated.
The windwheel of Hero of Alexandria (10 AD – 70 AD) marks one of the first recorded instances of wind powering a machine in history.[2][3] However, the first known practical wind power plants were built in Sistan, an Eastern province of Persia (now Iran), from the 7th century. These "Panemone" were vertical axle windmills, which had long vertical drive shafts with rectangular blades.[4] Made of six to twelve sails covered in reed matting or cloth material, these windmills were used to grind grain or draw up water, and were used in the gristmilling and sugarcane industries.[5]
Wind-generated electricity met nearly 4% of global electricity demand in 2015, with nearly 63 GW of new wind power capacity installed. Wind energy was the leading source of new capacity in Europe, the US and Canada, and the second largest in China. In Denmark, wind energy met more than 40% of its electricity demand while Ireland, Portugal and Spain each met nearly 20%.
In 2007, the US Congress directed the Department of Energy to report on ways to reduce water consumption by CSP. The subsequent report noted that dry cooling technology was available that, although more expensive to build and operate, could reduce water consumption by CSP by 91 to 95 percent. A hybrid wet/dry cooling system could reduce water consumption by 32 to 58 percent.[138] A 2015 report by NREL noted that of the 24 operating CSP power plants in the US, 4 used dry cooling systems. The four dry-cooled systems were the three power plants at the Ivanpah Solar Power Facility near Barstow, California, and the Genesis Solar Energy Project in Riverside County, California. Of 15 CSP projects under construction or development in the US as of March 2015, 6 were wet systems, 7 were dry systems, 1 hybrid, and 1 unspecified.
You should know that we at Solacity love wind turbines! Can’t get enough of ’em. Where the neighbours see life-threatening, blade-shedding, bat-and-bird killing, noise-making contraptions, we see poetry in motion. Kinetic art at its finest; combining form, movement, and function all in one. We could stare at them for hours, while contemplating the meaning of life, the universe, and everything… and have… until the beer ran out. Despite all the information presented here, we are big fans of small wind turbines. This page is about informing you, so you can make a decision based on fact and not marketing hype.
While renewables have been very successful in their ever-growing contribution to electrical power there are no countries dominated by fossil fuels who have a plan to stop and get that power from renwables. Only Scotland and Ontario have stopped burning coal, largely due to good natural gas supplies. In the area of transportation, fossil fuels are even more entrenched and solutions harder to find.[198] It's unclear if there are failures with policy or renewable energy, but twenty years after the Kyoto Protocol fossil fuels are still our primary energy source and consumption continues to grow.[199]
A heat pump is a device that provides heat energy from a source of heat to a destination called a "heat sink". Heat pumps are designed to move thermal energy opposite to the direction of spontaneous heat flow by absorbing heat from a cold space and releasing it to a warmer one. A solar-assisted heat pump represents the integration of a heat pump and thermal solar panels in a single integrated system. Typically these two technologies are used separately (or only placing them in parallel) to produce hot water.[180] In this system the solar thermal panel performs the function of the low temperature heat source and the heat produced is used to feed the heat pump's evaporator.[181] The goal of this system is to get high COP and then produce energy in a more efficient and less expensive way.
Small-scale turbines are expensive (one manufacturer says a typical system costs $40,000 to $60,000 to install), though some of that outlay can be offset by federal and local tax credits. Experts recommend that you buy one certified by the Small Wind Certification Council. Turbine manufacturers include Bergey Wind Power, Britwind and Xzeres Wind; look on their websites for local dealers.
Responsible development of all of America’s rich energy resources -- including solar, wind, water, geothermal, bioenergy & nuclear -- will help ensure America’s continued leadership in clean energy. Moving forward, the Energy Department will continue to drive strategic investments in the transition to a cleaner, domestic and more secure energy future.
At the end of 2014, worldwide PV capacity reached at least 177,000 megawatts. Photovoltaics grew fastest in China, followed by Japan and the United States, while Germany remains the world's largest overall producer of photovoltaic power, contributing about 7.0 percent to the overall electricity generation. Italy meets 7.9 percent of its electricity demands with photovoltaic power—the highest share worldwide.[119] For 2015, global cumulative capacity is forecasted to increase by more than 50 gigawatts (GW). By 2018, worldwide capacity is projected to reach as much as 430 gigawatts. This corresponds to a tripling within five years.[120] Solar power is forecasted to become the world's largest source of electricity by 2050, with solar photovoltaics and concentrated solar power contributing 16% and 11%, respectively. This requires an increase of installed PV capacity to 4,600 GW, of which more than half is expected to be deployed in China and India.[121]
The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. Charles Fritts installed the world's first rooftop photovoltaic solar array, using 1%-efficient selenium cells, on a New York City roof in 1884.[28] However, development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum.[29] In 1974 it was estimated that only six private homes in all of North America were entirely heated or cooled by functional solar power systems.[30] The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies.[31][32] Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the United States (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer–ISE).[33] Between 1970 and 1983 installations of photovoltaic systems grew rapidly, but falling oil prices in the early 1980s moderated the growth of photovoltaics from 1984 to 1996.
×