The waste we generate ends up in landfills, where it decomposes and produces landfill gas made of approximately 50 percent methane. This gas can be captured and used to fuel electric generators. Since large landfills must burn off this gas to reduce the hazards arising from gas buildup, this method of renewable energy is one of the most successful.


Biomass briquettes are increasingly being used in the developing world as an alternative to charcoal. The technique involves the conversion of almost any plant matter into compressed briquettes that typically have about 70% the calorific value of charcoal. There are relatively few examples of large-scale briquette production. One exception is in North Kivu, in eastern Democratic Republic of Congo, where forest clearance for charcoal production is considered to be the biggest threat to mountain gorilla habitat. The staff of Virunga National Park have successfully trained and equipped over 3500 people to produce biomass briquettes, thereby replacing charcoal produced illegally inside the national park, and creating significant employment for people living in extreme poverty in conflict-affected areas.[18]

In a twist that has some Republicans in this oil- and gas-rich state whistling Dixie, Ross is now friends with Al Gore, who featured Ross in An Inconvenient Sequel, the 2017 follow-up to An Inconvenient Truth, his Oscar-winning documentary about global warming. “We bonded right away,” Ross recalls. “I said, ‘Mr. Vice President, we’ve got a lot in common. You invented the internet. I invented green energy.’” Trained as an accountant, Ross still works as one—being mayor of Georgetown is a part-time job—and there’s no mistaking his zeal for the other kind of green. When conservatives complain about his energy politics, he is quick to remind them that the city has the lowest effective tax rate in Central Texas.

Low Temperature Geothermal[29] refers to the use of the outer crust of the earth as a Thermal Battery to facilitate Renewable thermal energy for heating and cooling buildings, and other refrigeration and industrial uses. In this form of Geothermal, a Geothermal Heat Pump and Ground-coupled heat exchanger are used together to move heat energy into the earth (for cooling) and out of the earth (for heating) on a varying seasonal basis. Low temperature Geothermal (generally referred to as "GHP") is an increasingly important renewable technology because it both reduces total annual energy loads associated with heating and cooling, and it also flattens the electric demand curve eliminating the extreme summer and winter peak electric supply requirements. Thus Low Temperature Geothermal/GHP is becoming an increasing national priority with multiple tax credit support[60] and focus as part of the ongoing movement toward Net Zero Energy.[61][30] New York City has even just passed a law[62] to require GHP anytime is shown to be economical with 20 year financing including the Socialized Cost of Carbon.[63][64]
It is hard to beat the advantages of solar: No moving parts. Warranties of 25 years are common for PV modules. No maintenance, other than the occasional hosing-off if you live in a dusty place. The installed price of a 6 kW wind turbine on a good height tower is about $50,000 (and we are not even counting the money you are going to sink into maintenance of that wind turbine). At the time of this writing, half that money will buy you about 7 kW of installed solar panels. In our not-so-sunny Ottawa location those solar modules will produce around 8,000 kWh of electrical energy per average year, and they will do that for 30 years or more.
The conversion of sunlight into electricity is made possible with the special properties of semi-conducting materials. It can be harnessed through a range of ever-evolving technologies like solar heating, photovoltaics, solar thermal energy, solar architecture, molten salt power plants, and artificial photosynthesis. Learn more about solar solutions from IGS Solar.
According to the International Energy Agency, new bioenergy (biofuel) technologies being developed today, notably cellulosic ethanol biorefineries, could allow biofuels to play a much bigger role in the future than previously thought.[41] Cellulosic ethanol can be made from plant matter composed primarily of inedible cellulose fibers that form the stems and branches of most plants. Crop residues (such as corn stalks, wheat straw and rice straw), wood waste and municipal solid waste are potential sources of cellulosic biomass. Dedicated energy crops, such as switchgrass, are also promising cellulose sources that can be sustainably produced in many regions of the United States.[42]
✅ FEATURES: Integrated automatic braking system to protect from sudden and high wind speed. Easy DIY installation methods with all materials provided. Can be used in conjunction with solar panels. MPPT Maximum power point tracking built into the wind turbine generator. Made with high quality Polypropylene and Glass Fiber material with a weather resistant seal.
List of books about renewable energy List of countries by electricity production from renewable sources List of geothermal power stations Lists of hydroelectric power stations List of largest hydroelectric power stations List of people associated with renewable energy List of renewable energy companies by stock exchange List of renewable energy organizations List of renewable energy topics by country List of U.S. states by electricity production from renewable sources
Renewable energy is derived from natural processes that are replenished constantly. In its various forms, it derives directly from the sun, or from heat generated deep within the earth. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and biofuels and hydrogen derived from renewable resources.
Consumers throughout the United States have a third green power option: Renewable Energy Certificates (RECs or sometimes "green tags"). A REC represents the environmental attributes or benefits of renewable electricity generation (usually one credit = one kilowatt-hour). RECs can be purchased in almost any quantity and are usually available from someone other than your electricity provider. What you pay for is the benefit of adding clean, renewable energy generation to the regional or national electricity grid. The overall environmental benefit of purchasing a green pricing or green marketing product versus RECs is exactly the same. RECs provide a "green" option for people in any state, but are ideal for people who live in states where green pricing and green marketing options are not available. 
“Hurricane-Broken Air Power Base Has an Alternative to Rebuild for Resilience” • Rebuilding the hurricane-wrecked Tyndall Air Force Base in Florida will come with a massive price tag, but experts say it offers a chance to make the base more resilient to the effects of extreme weather. Hurricane Michael hit Tyndall as a Category 4 storm. [Infosurhoy]
Most in the industry agree that 11 m/s (24.6 mph) makes for a good rated wind speed. Go above it and very soon the turbine should be hard at work to protect itself from destruction, by furling, governing, or shutting down. Those that do not will likely face a short and tortured life. If we agree on 11 m/s, an equation for a realistic rated power number is as follows:
America is embracing renewables, slowly. In 2016, Massachusetts passed a law promoting a huge investment in wind and hydropower; the first megawatt is expected to hit the grid in 2020. Early this year New York State announced plans to spend 12 years building the infrastructure for a $6 billion offshore wind power industry. Hawaii has pledged to be powered entirely by renewable energy—in 2045. Atlanta’s goal is 2035 and San Francisco’s is 2030. Typically, plans to convert to sustainable energy stretch on for decades.
Materials for wind turbine parts other than the rotor blades (including the rotor hub, gearbox, frame, and tower) are largely composed of steel. Modern turbines use a couple of tons of copper for generators, cables, and such.[52] Smaller wind turbines have begun incorporating more aluminum based alloys into these components in an effort to make the turbines lighter and more efficient, and may continue to be used increasingly if fatigue and strength properties can be improved. Prestressed concrete has been increasingly used for the material of the tower, but still requires much reinforcing steel to meet the strength requirement of the turbine. Additionally, step-up gearboxes are being increasingly replaced with variable speed generators, increasing the demand for magnetic materials in wind turbines.[46] In particular, this would require an increased supply of the rare earth metal neodymium.
Besides the greening of fossil fuel and nuclear power plants, another option is the distribution and immediate use of power from solely renewable sources. In this set-up energy storage is again not necessary. For example, TREC has proposed to distribute solar power from the Sahara to Europe. Europe can distribute wind and ocean power to the Sahara and other countries. In this way, power is produced at any given time as at any point of the planet as the sun or the wind is up or ocean waves and currents are stirring. This option however is probably not possible in the short-term, as fossil fuel and nuclear power are still the main sources of energy on the mains electricity net and replacing them will not be possible overnight.
One 50 Amp 1000 Volt - 3 Phase Rectifier ---Intended for wind turbine rated for 50 amps continuous usage. ---This item is used to convert 3 phase AC to DC. ---Rectifier has spade terminals which will make for a clean and secure installation. No wondering if your wiring is going to come loose. ---One mounting hole to secure the body of the rectifier to your mounting box ---This item is not to me confused with a blocking diode to be used in DC motor applications or with solar. Powered by [eBay Turbo Lister] (http://pages.ebay.com/turbo_lister/) The free listing tool. List your items fast and easy and manage your active items. Froo www.froo.com | Froo Cross Sell, Free Cross Sell, Cross promote, eBay Marketing, eBay listing Apps, eBay Apps, eBay Application [FREE! Sellers: Add a FREE map to your listings. FREE!] (http://newage.mystoremaps.
The stiffness of composites is determined by the stiffness of fibers and their volume content. Typically, E-glass fibers are used as main reinforcement in the composites. Typically, the glass/epoxy composites for wind blades contain up to 75 weight % glass. This increases the stiffness, tensile and compression strength. A promising source of the composite materials in the future is glass fibers with modified compositions like S-glass, R-glass etc. Some other special glasses developed by Owens Corning are ECRGLAS, Advantex and most recently WindStrand glass fibers. [49]

From 1978 to 1996, the National Renewable Energy Laboratory experimented with producing algae fuel in the "Aquatic Species Program."[112] A self-published article by Michael Briggs, at the University of New Hampshire Biofuels Group, offers estimates for the realistic replacement of all motor vehicle fuel with biofuels by utilizing algae that have a natural oil content greater than 50%, which Briggs suggests can be grown on algae ponds at wastewater treatment plants.[113] This oil-rich algae can then be extracted from the system and processed into biofuels, with the dried remainder further reprocessed to create ethanol. The production of algae to harvest oil for biofuels has not yet been undertaken on a commercial scale, but feasibility studies have been conducted to arrive at the above yield estimate. During the biofuel production process algae actually consumes the carbon dioxide in the air and turns it into oxygen through photosynthesis.[114] In addition to its projected high yield, algaculture— unlike food crop-based biofuels — does not entail a decrease in food production, since it requires neither farmland nor fresh water. Many companies are pursuing algae bio-reactors for various purposes, including scaling up biofuels production to commercial levels.[115][116]

The Sunforce 44444 400 Watt Wind Generator uses wind to generate power and run your appliances and electronics, helping to produce electricity at cabins and worksites far from existing power lines. Constructed from lightweight, weatherproof cast aluminum, this generator charges 12-volt batteries for large power demands in both land and marine environments. With a maximum power up to 400 watts, this device features a fully integrated regulator that automatically shuts down when the batteries are completely charged.
A Wind Turbine Generator is what makes your electricity by converting mechanical energy into electrical energy. Lets be clear here, they do not create energy or produce more electrical energy than the amount of mechanical energy being used to spin the rotor blades. The greater the “load”, or electrical demand placed on the generator, the more mechanical force is required to turn the rotor. This is why generators come in different sizes and produce differing amounts of electricity.
In 2006 California approved the 'California Solar Initiative', offering a choice of investment subsidies or FIT for small and medium systems and a FIT for large systems. The small-system FIT of $0.39 per kWh (far less than EU countries) expires in just 5 years, and the alternate "EPBB" residential investment incentive is modest, averaging perhaps 20% of cost. All California incentives are scheduled to decrease in the future depending as a function of the amount of PV capacity installed.

Efficiency can decrease slightly over time, one of the main reasons being dust and insect carcasses on the blades which alters the aerodynamic profile and essentially reduces the lift to drag ratio of the airfoil. Analysis of 3128 wind turbines older than 10 years in Denmark showed that half of the turbines had no decrease, while the other half saw a production decrease of 1.2% per year.[19] Ice accretion on turbine blades has also been found to greatly reduce the efficiency of wind turbines, which is a common challenge in cold climates where in-cloud icing and freezing rain events occur.[20] Vertical turbine designs have much lower efficiency than standard horizontal designs.[21]

These high strength magnets are usually made from rare earth materials such as neodymium iron (NdFe), or samarium cobalt (SmCo) eliminating the need for the field windings to provide a constant magnetic field, leading to a simpler, more rugged construction. Wound field windings have the advantage of matching their magnetism (and therefore power) with the varying wind speed but require an external energy source to generate the required magnetic field.

Wind power first appeared in Europe during the Middle Ages. The first historical records of their use in England date to the 11th or 12th centuries and there are reports of German crusaders taking their windmill-making skills to Syria around 1190.[6] By the 14th century, Dutch windmills were in use to drain areas of the Rhine delta. Advanced wind turbines were described by Croatian inventor Fausto Veranzio. In his book Machinae Novae (1595) he described vertical axis wind turbines with curved or V-shaped blades.
A more recent concept for improving our electrical grid is to beam microwaves from Earth-orbiting satellites or the moon to directly when and where there is demand. The power would be generated from solar energy captured on the lunar surface In this system, the receivers would be "broad, translucent tent-like structures that would receive microwaves and convert them to electricity". NASA said in 2000 that the technology was worth pursuing but it is still too soon to say if the technology will be cost-effective.[77]

Then I pick up a Home Power Magazine, or a Backwoods Home, or a Mother Earth News.  I read the letters to the editor and I think, These are my people!  This is my tribe—the tribe of folks striving for independence of thought and lifestyle, who are creative in their choice of building materials, who try to make responsible choices about how their choices affect the environment they live in.


A wind turbine is made up of two major components and having looked at one of them, the rotor blade design in the previous tutorial, we can now look at the other, the Wind Turbine Generator or WTG’s which is the electrical machine used to generate the electricity. A low rpm electrical generator is used for converting the mechanical rotational power produced by the winds energy into usable electricity to supply our homes and is at the heart of any wind power system.
Several refineries that can process biomass and turn it into ethanol are built by companies such as Iogen, POET, and Abengoa, while other companies such as the Verenium Corporation, Novozymes, and Dyadic International[163] are producing enzymes which could enable future commercialization. The shift from food crop feedstocks to waste residues and native grasses offers significant opportunities for a range of players, from farmers to biotechnology firms, and from project developers to investors.[164]
A Darrieus type vertical axis wind turbine (the egg-beater type) can in theory work almost as good as a horizontal axis turbine. Actual measurement of one of the better designs out there, the UGE VisionAir5, does not bear that out though: It measures in at a pitiful 11% efficiency at 11 m/s wind speed, while a Bergey Excel-6 HAWT clocks in at 22% efficiency for that same wind speed, twice as much. You can read about it in Paul Gipe’s article.  Besides efficiency issues, a Darrieus VAWT unfortunately has a number of inherent issues that put them at a disadvantage: Since they are usually tall and relatively narrow structures the bending forces on their main bearing (at the bottom) are very large. There are similar issues with the forces on the blades. This means that to make a reliable vertical axis turbine takes more material, and more expensive materials, in comparison to a horizontal type turbine. For comparison, that same UGE VisionAir5 weighs 756 kg vs. the Bergey Excel-6 at 350 kg. Keep in mind that the UGE turbine only sweeps about half the area of the Bergey, the latter is a much larger turbine! This makes VAWTs inherently more expensive, or less reliable, or both.

Run-of-the-river hydroelectricity plants derive energy from rivers without the creation of a large reservoir. The water is typically conveyed along the side of the river valley (using channels, pipes and/or tunnels) until it is high above the valley floor, whereupon it can allowed to fall through a penstock to drive a turbine. This style of generation may still produce a large amount of electricity, such as the Chief Joseph Dam on the Columbia river in the United States.
Renewable energy and energy efficiency are sometimes said to be the "twin pillars" of sustainable energy policy. Both resources must be developed in order to stabilize and reduce carbon dioxide emissions. Efficiency slows down energy demand growth so that rising clean energy supplies can make deep cuts in fossil fuel use. If energy use grows too fast, renewable energy development will chase a receding target. A recent historical analysis has demonstrated that the rate of energy efficiency improvements has generally been outpaced by the rate of growth in energy demand, which is due to continuing economic and population growth. As a result, despite energy efficiency gains, total energy use and related carbon emissions have continued to increase. Thus, given the thermodynamic and practical limits of energy efficiency improvements, slowing the growth in energy demand is essential.[61] However, unless clean energy supplies come online rapidly, slowing demand growth will only begin to reduce total emissions; reducing the carbon content of energy sources is also needed. Any serious vision of a sustainable energy economy thus requires commitments to both renewables and efficiency.[62]
Heat pumps and Thermal energy storage are classes of technologies that can enable the utilization of renewable energy sources that would otherwise be inaccessible due to a temperature that is too low for utilization or a time lag between when the energy is available and when it is needed. While enhancing the temperature of available renewable thermal energy, heat pumps have the additional property of leveraging electrical power (or in some cases mechanical or thermal power) by using it to extract additional energy from a low quality source (such as seawater, lake water, the ground, the air, or waste heat from a process).
“California Looks to Stationary Energy Storage as a Solution to Peaker Plants” • Central California electric utility Pacific Gas & Electric is planning to replace three old natural gas power plants in its network with stationary energy storage installations from Tesla. California is looking to add 1.3 GW of storage to its power grid by 2020. [CleanTechnica]
Hydropower is produced in 150 countries, with the Asia-Pacific region generating 32 percent of global hydropower in 2010. For countries having the largest percentage of electricity from renewables, the top 50 are primarily hydroelectric. China is the largest hydroelectricity producer, with 721 terawatt-hours of production in 2010, representing around 17 percent of domestic electricity use. There are now three hydroelectricity stations larger than 10 GW: the Three Gorges Dam in China, Itaipu Dam across the Brazil/Paraguay border, and Guri Dam in Venezuela.[48]
When energy is purchased from the electricity network, the power reaching the consumer will not necessarily be generated from green energy sources. The local utility company, electric company, or state power pool buys their electricity from electricity producers who may be generating from fossil fuel, nuclear or renewable energy sources. In many countries green energy currently provides a very small amount of electricity, generally contributing less than 2 to 5% to the overall pool. In some U.S. states, local governments have formed regional power purchasing pools using Community Choice Aggregation and Solar Bonds to achieve a 51% renewable mix or higher, such as in the City of San Francisco.[76]

Most cars on the road today in the U.S. can run on blends of up to 10% ethanol, and motor vehicle manufacturers already produce vehicles designed to run on much higher ethanol blends. Ford, DaimlerChrysler, and GM are among the automobile companies that sell "flexible-fuel" cars, trucks, and minivans that can use gasoline and ethanol blends ranging from pure gasoline up to 85% ethanol (E85). By mid-2006, there were approximately six million E85-compatible vehicles on U.S. roads.[39]
Jump up ^ Artificial photosynthesis as a frontier technology for energy sustainability. Thomas Faunce, Stenbjorn Styring, Michael R. Wasielewski, Gary W. Brudvig, A. William Rutherford, Johannes Messinger, Adam F. Lee, Craig L. Hill, Huub deGroot, Marc Fontecave, Doug R. MacFarlane, Ben Hankamer, Daniel G. Nocera, David M. Tiede, Holger Dau, Warwick Hillier, Lianzhou Wang and Rose Amal. Energy Environ. Sci., 2013, Advance Article doi:10.1039/C3EE40534F
Several large-scale energy storage suggestions for the grid have been done. Worldwide there is over 100 GW of Pumped-storage hydroelectricity. This improves efficiency and decreases energy losses but a conversion to an energy storing mains electricity grid is a very costly solution. Some costs could potentially be reduced by making use of energy storage equipment the consumer buys and not the state. An example is batteries in electric cars that would double as an energy buffer for the electricity grid. However besides the cost, setting-up such a system would still be a very complicated and difficult procedure. Also, energy storage apparatus' as car batteries are also built with materials that pose a threat to the environment (e.g. Lithium). The combined production of batteries for such a large part of the population would still have environmental concerns. Besides car batteries however, other Grid energy storage projects make use of less polluting energy carriers (e.g. compressed air tanks and flywheel energy storage).
As of 2014, offshore wind power amounted to 8,771 megawatt of global installed capacity. Although offshore capacity doubled within three years (from 4,117 MW in 2011), it accounted for only 2.3% of the total wind power capacity. The United Kingdom is the undisputed leader of offshore power with half of the world's installed capacity ahead of Denmark, Germany, Belgium and China.
Energy harnessed by wind turbines is intermittent, and is not a "dispatchable" source of power; its availability is based on whether the wind is blowing, not whether electricity is needed. Turbines can be placed on ridges or bluffs to maximize the access of wind they have, but this also limits the locations where they can be placed.[72] In this way, wind energy is not a particularly reliable source of energy. However, it can form part of the energy mix, which also includes power from other sources. Notably, the relative available output from wind and solar sources is often inversely proportional (balancing)[citation needed]. Technology is also being developed to store excess energy, which can then make up for any deficits in supplies.
The Solar updraft tower is a renewable-energy power plant for generating electricity from low temperature solar heat. Sunshine heats the air beneath a very wide greenhouse-like roofed collector structure surrounding the central base of a very tall chimney tower. The resulting convection causes a hot air updraft in the tower by the chimney effect. This airflow drives wind turbines placed in the chimney updraft or around the chimney base to produce electricity. Plans for scaled-up versions of demonstration models will allow significant power generation, and may allow development of other applications, such as water extraction or distillation, and agriculture or horticulture. A more advanced version of a similarly themed technology is the Vortex engine which aims to replace large physical chimneys with a vortex of air created by a shorter, less-expensive structure.

Today that initiative, the Green Climate Fund, is an “empty shell,” Mr. Ban said in a recent phone interview. The lifelong diplomat — who recently assumed the presidency of the Global Green Growth Institute, an international organization based in Seoul, South Korea, that focuses on clean energy development — said he hoped to use the next chapter of his career to help poor countries meet their goals under the Paris agreement on climate change.
With investment subsidies, the financial burden falls upon the taxpayer, while with feed-in tariffs the extra cost is distributed across the utilities' customer bases. While the investment subsidy may be simpler to administer, the main argument in favour of feed-in tariffs is the encouragement of quality. Investment subsidies are paid out as a function of the nameplate capacity of the installed system and are independent of its actual power yield over time, thus rewarding the overstatement of power and tolerating poor durability and maintenance. Some electric companies offer rebates to their customers, such as Austin Energy in Texas, which offers $2.50/watt installed up to $15,000.[96]
×