Environmental impact of wind power includes effect on wildlife, but can be mitigated if proper monitoring and mitigation strategies are implemented.[76] Thousands of birds, including rare species, have been killed by the blades of wind turbines,[77] though wind turbines contribute relatively insignificantly to anthropogenic avian mortality. For every bird killed by a wind turbine in the US, nearly 500,000 are killed by each of feral cats and buildings.[78] In comparison, conventional coal fired generators contribute significantly more to bird mortality, by incineration when caught in updrafts of smoke stacks and by poisoning with emissions byproducts (including particulates and heavy metals downwind of flue gases). Further, marine life is affected by water intakes of steam turbine cooling towers (heat exchangers) for nuclear and fossil fuel generators, by coal dust deposits in marine ecosystems (e.g. damaging Australia's Great Barrier Reef) and by water acidification from combustion monoxides.
In terms of ocean energy, another third-generation technology, Portugal has the world's first commercial wave farm, the Aguçadora Wave Park, under construction in 2007. The farm will initially use three Pelamis P-750 machines generating 2.25 MW.[44][45] and costs are put at 8.5 million euro. Subject to successful operation, a further 70 million euro is likely to be invested before 2009 on a further 28 machines to generate 525 MW.[46] Funding for a wave farm in Scotland was announced in February, 2007 by the Scottish Executive, at a cost of over 4 million pounds, as part of a £13 million funding packages for ocean power in Scotland. The farm will be the world's largest with a capacity of 3 MW generated by four Pelamis machines.[47] (see also Wave farm).
The world of small wind turbines is much like the wild-west of a century ago: Anything goes, and no claim is too bold. Wind turbine manufacturers will even routinely make claims that are not supported by the Laws of Physics. Energy production claims are often exaggerated, as are power curves. In fact, this is the rule, not the exception. Those manufacturers that tell the truth are the exception. Many manufacturers have never tested their wind turbines under real-world conditions. Some have never tested their turbine before selling it to unsuspecting customers. We are not joking! Because we sell grid-tie inverters for small wind turbines we have a front-row seat when it comes to actual operation of turbines of many makes and models. It turns out that some do not work; they self-destruct within days, and sometimes run away and blow their inverter within seconds after being turned onfor  the first time (clearly nobody at the factory bothered to ever test it).

Efficiency can decrease slightly over time, one of the main reasons being dust and insect carcasses on the blades which alters the aerodynamic profile and essentially reduces the lift to drag ratio of the airfoil. Analysis of 3128 wind turbines older than 10 years in Denmark showed that half of the turbines had no decrease, while the other half saw a production decrease of 1.2% per year.[19] Ice accretion on turbine blades has also been found to greatly reduce the efficiency of wind turbines, which is a common challenge in cold climates where in-cloud icing and freezing rain events occur.[20] Vertical turbine designs have much lower efficiency than standard horizontal designs.[21]

DOE selected six companies for its 2007 Green Power Supplier Awards, including Constellation NewEnergy; 3Degrees; Sterling Planet; SunEdison; Pacific Power and Rocky Mountain Power; and Silicon Valley Power. The combined green power provided by those six winners equals more than 5 billion kilowatt-hours per year, which is enough to power nearly 465,000 average U.S. households. In 2014, Arcadia Power made RECS available to homes and businesses in all 50 states, allowing consumers to use "100% green power" as defined by the EPA's Green Power Partnership.[86][87]
Rated power of a wind turbine may not be quite as meaningless as cut-in wind speed, though its use is limited. It could have some utility to quickly compare, or get a feel for, the size of the wind turbine, but only if those rated power numbers were taken at the same rated wind speed, and if the manufacturer is giving you a realistic number (many inflate rated power). A much better measure of turbine size is, simply, their diameter. As shown above it is by far the best predictor for power output.
Climate change and global warming concerns, coupled with high oil prices, peak oil, and increasing government support, are driving increasing renewable energy legislation, incentives and commercialization.[10] New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors.[24] According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment.[25]
Jump up ^ Noth, André (July 2008). "History of Solar Flight" (PDF). Autonomous Systems Lab. Zürich: Swiss Federal Institute of Technology. p. 3. Archived from the original (PDF) on 1 February 2012. Retrieved 8 July 2010. Günter Rochelt was the designer and builder of Solair I, a 16 m wingspan solar airplane ... 21st of August 1983 he flew in Solair I, mostly on solar energy and also thermals, during 5 hours 41 minutes.
Besides getting a working product, the one measure you are after as a small wind turbine owner is how much electrical energy it will produce for your location. Hopefully by now you know the annual average wind speed for the height that you are planning to put your turbine at, and you have selected a site with little turbulence. Forget about the manufacturer’s claims; it turns out that the best predictors for turbine energy production are the diameter and average wind speed. Here is an equation that will calculate approximate annual average energy production for a grid-tie horizontal axis turbine of reasonable efficiency:
There are two types of crystalline silicon, but it’s likely you’ll more often encounter monocrystalline silicon: it has a square-ish structure, and its high silicon content makes it more effective (and more expensive) than other panel materials. The other type of crystalline silicon, polycrystalline, is cheaper but less effective, so it’s used when there’s plenty of space (e.g., on a solar farm)—typically not on residential installs.
Compact Linear Fresnel Reflectors are CSP-plants which use many thin mirror strips instead of parabolic mirrors to concentrate sunlight onto two tubes with working fluid. This has the advantage that flat mirrors can be used which are much cheaper than parabolic mirrors, and that more reflectors can be placed in the same amount of space, allowing more of the available sunlight to be used. Concentrating linear fresnel reflectors can be used in either large or more compact plants.[16][17]