So how do wind turbines make electricity? Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity. View the wind turbine animation to see how a wind turbine works or take a look inside.

Taken together, the generation and distribution of electric power in the United States is an astonishingly complex undertaking. Utilities may generate their own power or buy it from other utilities; that power travels over a grid of transformers and high- and low-voltage lines to your house. Ownership of utilities varies from nonprofits to cooperatives to for-profits. Federal regulators ultimately oversee the grid. Amazingly, when you flip a switch, electricity is there.
In stand alone PV systems batteries are traditionally used to store excess electricity. With grid-connected photovoltaic power system, excess electricity can be sent to the electrical grid. Net metering and feed-in tariff programs give these systems a credit for the electricity they produce. This credit offsets electricity provided from the grid when the system cannot meet demand, effectively trading with the grid instead of storing excess electricity. Credits are normally rolled over from month to month and any remaining surplus settled annually.[111] When wind and solar are a small fraction of the grid power, other generation techniques can adjust their output appropriately, but as these forms of variable power grow, additional balance on the grid is needed. As prices are rapidly declining, PV systems increasingly use rechargeable batteries to store a surplus to be later used at night. Batteries used for grid-storage stabilize the electrical grid by leveling out peak loads usually for several minutes, and in rare cases for hours. In the future, less expensive batteries could play an important role on the electrical grid, as they can charge during periods when generation exceeds demand and feed their stored energy into the grid when demand is higher than generation.

A more reliable grid: Even if we're not ready to completely transition to renewable energy sources of power, supplementing the grid with green electricity helps increase grid reliability. You can also produce your own green electricity by installing solar panels or wind turbines at home. If the grid goes down for some reason, you may be able to keep your power on using your on-site renewable power generation system.

Interest in recycling blades varies in different markets and depends on the waste legislation and local economics. A challenge in recycling blades is related to the composite material, which is made of a thermosetting matrix and glass fibers or a combination of glass and carbon fibers. Thermosetting matrix cannot be remolded to form new composites. So the options are either to reuse the blade and the composite material elements as they are found in the blade or to transform the composite material into a new source of material. In Germany, wind turbine blades are commercially recycled as part of an alternative fuel mix for a cement factory.
Second-generation technologies include solar heating and cooling, wind power, modern forms of bioenergy and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. The initial investment was prompted by energy security concerns linked to the oil crises (1973 and 1979) of the 1970s but the continuing appeal of these renewables is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials.

Manufacturers often claim that their vertical axis turbine is superior to a horizontal one, because it always faces the wind. So does any horizontal axis turbine, thanks to their tail or yaw mechanism. If the airflow is such that wind directions change drastically from one second to the next it means you have lots of turbulence, and that means it is a poor place to put any wind turbine, HAWT or VAWT.

With that in mind it makes a great deal of sense to use a tilt-up tower for your turbine. It makes maintenance and repairs much safer (on the ground) and cheaper. Crane fees, or having turbine installers hang off the top of a tower for long periods of time, tend to get very expensive. You should also budget for repairs, they will happen. Parts may be free under warranty, your installer’s time is not.
Small wind turbines may be used for a variety of applications including on- or off-grid residences, telecom towers, offshore platforms, rural schools and clinics, remote monitoring and other purposes that require energy where there is no electric grid, or where the grid is unstable. Small wind turbines may be as small as a fifty-watt generator for boat or caravan use. Hybrid solar and wind powered units are increasingly being used for traffic signage, particularly in rural locations, as they avoid the need to lay long cables from the nearest mains connection point.[60] The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) defines small wind turbines as those smaller than or equal to 100 kilowatts.[61] Small units often have direct drive generators, direct current output, aeroelastic blades, lifetime bearings and use a vane to point into the wind.
Geothermal energy is produced by tapping into the thermal energy created and stored within the earth. It arises from the radioactive decay of an isotope of potassium and other elements found in the Earth's crust.[144] Geothermal energy can be obtained by drilling into the ground, very similar to oil exploration, and then it is carried by a heat-transfer fluid (e.g. water, brine or steam).[144] Geothermal systems that are mainly dominated by water have the potential to provide greater benefits to the system and will generate more power.[145] Within these liquid-dominated systems, there are possible concerns of subsidence and contamination of ground-water resources. Therefore, protection of ground-water resources is necessary in these systems. This means that careful reservoir production and engineering is necessary in liquid-dominated geothermal reservoir systems.[145] Geothermal energy is considered sustainable because that thermal energy is constantly replenished.[146] However, the science of geothermal energy generation is still young and developing economic viability. Several entities, such as the National Renewable Energy Laboratory[147] and Sandia National Laboratories[148] are conducting research toward the goal of establishing a proven science around geothermal energy. The International Centre for Geothermal Research (IGC), a German geosciences research organization, is largely focused on geothermal energy development research.[149]
The first words of everyone calling us are “the wind is blowing here all the time”. People consistently overestimate how windy their place actually is. They forget about all the times the wind does not blow, and only remember the windy days. Such is human nature. Before even considering a small wind turbine you need to have a good idea of the annual average wind speed for your site. The gold standard is to install a data-logging anemometer (wind meter) at the same height and location as the proposed wind turbine, and let it run for 3 to 5 years. Truth is that it is usually much too expensive to do for small wind turbines, and while logging for 1 year could give you some idea and is the absolute minimum for worthwhile wind information, it is too short to be very reliable. For most of us, the more economical way to find out about the local average wind speed is by looking at a wind atlas, meteorological data, airport information and possibly the local vegetation (for windy spots the trees take on interesting shapes).

We harness the earth’s most abundant resources – the strength of the wind, the heat of the sun and the force of water – to power the world’s biggest economies and the most remote communities. Combining onshore and offshore wind, hydro and innovative technologies, GE Renewable Energy has installed more than 400+ gigawatts capacity globally to make the world work better and cleaner.

Biomass, biogas and biofuels are burned to produce heat/power and in doing so harm the environment. Pollutants such as sulphurous oxides (SOx), nitrous oxides (NOx), and particulate matter (PM) are produced from this combustion; the World Health Organisation estimates that 7 million premature deaths are caused each year by air pollution.[102] Biomass combustion is a major contributor.[102][103][104]
Hydro-electricity and geothermal electricity produced at favourable sites are now the cheapest way to generate electricity. Renewable energy costs continue to drop, and the levelised cost of electricity (LCOE) is declining for wind power, solar photovoltaic (PV), concentrated solar power (CSP) and some biomass technologies.[100] Renewable energy is also the most economic solution for new grid-connected capacity in areas with good resources. As the cost of renewable power falls, the scope of economically viable applications increases. Renewable technologies are now often the most economic solution for new generating capacity. Where "oil-fired generation is the predominant power generation source (e.g. on islands, off-grid and in some countries) a lower-cost renewable solution almost always exists today".[100] A series of studies by the US National Renewable Energy Laboratory modeled the "grid in the Western US under a number of different scenarios where intermittent renewables accounted for 33 percent of the total power." In the models, inefficiencies in cycling the fossil fuel plants to compensate for the variation in solar and wind energy resulted in an additional cost of "between $0.47 and $1.28 to each MegaWatt hour generated"; however, the savings in the cost of the fuels saved "adds up to $7 billion, meaning the added costs are, at most, two percent of the savings."[101]

It is unfortunate to see how well marketing for small wind turbines is working: I often see people post questions on forums, where they are looking for a wind turbine “with a low cut-in wind speed”. Depending on whom you ask, the cut-in wind speed is either the wind speed where the turbine starts turning, or the wind speed where it starts to produce some power. For most wind turbines it is around 2.5 – 3.5 m/s (5.5 – 8 mph), and it is an utterly meaningless parameter.

The energy it calculates is in kWh per year, the diameter of the wind turbine rotor is in meters, the wind speed is annual average for the turbine hub height in m/s. The equation uses a Weibull wind distribution with a factor of K=2, which is about right for inland sites. An overall efficiency of the turbine, from wind to electrical grid, of 30% is used. That is a reasonable, real-world efficiency number. Here is a table that shows how average annual wind speed, turbine size, and annual energy production relate:

The Instapark SP-50W solar panel offers you a The Instapark SP-50W solar panel offers you a quiet clean while carbon-free alternative. Capable of converting virtually unlimited solar energy into clean green most importantly free electricity this solar panel is made of high efficiency mono-crystalline solar cells embedded in transparent vinyl acetate behind tempered glass with heavy back sheet ...  More + Product Details Close
We now know that the electrical generator provides a means of energy conversion between the mechanical torque generated by the rotor blades, called the prime mover, and some electrical load. The mechanical connection of the wind turbine generator to the rotor blades is made through a main shaft which can be either a simple direct drive, or by using a gearbox to increase or decrease the generator speed relative to the rotational speed of the blades.
Modern turbines usually have a small onboard crane for hoisting maintenance tools and minor components. However, large heavy components like generator, gearbox, blades and so on are rarely replaced and a heavy lift external crane is needed in those cases. If the turbine has a difficult access road, a containerized crane can be lifted up by the internal crane to provide heavier lifting.[68]
Commercial concentrated solar power plants were first developed in the 1980s. As the cost of solar electricity has fallen, the number of grid-connected solar PV systems has grown into the millions and utility-scale solar power stations with hundreds of megawatts are being built. Solar PV is rapidly becoming an inexpensive, low-carbon technology to harness renewable energy from the Sun.
Jump up ^ James, Paul; Magee, Liam; Scerri, Andy; Steger, Manfred B. (2015). Urban Sustainability in Theory and Practice:. London: Routledge.; Liam Magee; Andy Scerri; Paul James; Jaes A. Thom; Lin Padgham; Sarah Hickmott; Hepu Deng; Felicity Cahill (2013). "Reframing social sustainability reporting: Towards an engaged approach". Environment, Development and Sustainability. Springer.
Wind turbines need wind. Not just any wind, but the nicely flowing, smooth, laminar kind. That cannot be found at 30 feet height. It can usually not be found at 60 feet. Sometimes you find it at 80 feet. More often than not it takes 100 feet of tower to get there. Those towers cost as much or more, installed, as the turbine itself. How much tower you need for a wind turbine to live up to its potential depends on your particular site; on the trees and structures around it etc. Close to the ground the wind is turbulent, and makes a poor fuel for a small wind turbine.
It is hard to beat the advantages of solar: No moving parts. Warranties of 25 years are common for PV modules. No maintenance, other than the occasional hosing-off if you live in a dusty place. The installed price of a 6 kW wind turbine on a good height tower is about $50,000 (and we are not even counting the money you are going to sink into maintenance of that wind turbine). At the time of this writing, half that money will buy you about 7 kW of installed solar panels. In our not-so-sunny Ottawa location those solar modules will produce around 8,000 kWh of electrical energy per average year, and they will do that for 30 years or more.
Climate change and global warming concerns, coupled with high oil prices, peak oil, and increasing government support, are driving increasing renewable energy legislation, incentives and commercialization.[10] New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors.[24] According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment.[25]

High Temperature Geothermal energy is from thermal energy generated and stored in the Earth. Thermal energy is the energy that determines the temperature of matter. Earth's geothermal energy originates from the original formation of the planet and from radioactive decay of minerals (in currently uncertain[56] but possibly roughly equal[57] proportions). The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface. The adjective geothermal originates from the Greek roots geo, meaning earth, and thermos, meaning heat.

Within emerging economies, Brazil comes second to China in terms of clean energy investments. Supported by strong energy policies, Brazil has one of the world’s highest biomass and small-hydro power capacities and is poised for significant growth in wind energy investment. The cumulative investment potential in Brazil from 2010 to 2020 is projected as $67 billion.[155]

A heat pump is a device that provides heat energy from a source of heat to a destination called a "heat sink". Heat pumps are designed to move thermal energy opposite to the direction of spontaneous heat flow by absorbing heat from a cold space and releasing it to a warmer one. A solar-assisted heat pump represents the integration of a heat pump and thermal solar panels in a single integrated system. Typically these two technologies are used separately (or only placing them in parallel) to produce hot water.[180] In this system the solar thermal panel performs the function of the low temperature heat source and the heat produced is used to feed the heat pump's evaporator.[181] The goal of this system is to get high COP and then produce energy in a more efficient and less expensive way.
The Desert Sunlight Solar Farm is a 550 MW power plant in Riverside County, California, that uses thin-film CdTe-modules made by First Solar.[41] As of November 2014, the 550 megawatt Topaz Solar Farm was the largest photovoltaic power plant in the world. This was surpassed by the 579 MW Solar Star complex. The current largest photovoltaic power station in the world is Longyangxia Dam Solar Park, in Gonghe County, Qinghai, China.