Biofuels include a wide range of fuels which are derived from biomass. The term covers solid, liquid, and gaseous fuels.[73] Liquid biofuels include bioalcohols, such as bioethanol, and oils, such as biodiesel. Gaseous biofuels include biogas, landfill gas and synthetic gas. Bioethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. These include maize, sugarcane and, more recently, sweet sorghum. The latter crop is particularly suitable for growing in dryland conditions, and is being investigated by International Crops Research Institute for the Semi-Arid Tropics for its potential to provide fuel, along with food and animal feed, in arid parts of Asia and Africa.[74]

Buying a wind turbine generator such as the Windmax HY1000 to produce wind energy is not easy and there are a lot of factors to take into account. Price is only one of them. Be sure to choose an electrical machine that meets your needs. If you are installing a grid-connected system, choose an AC mains voltage generator. If you are installing a battery-based system, look for a battery-charging DC generator. Also consider the mechanical design of a generator such as size and weight, operating speed and protection from the environment as it will spend all of its life mounted at the top of a pole or tower.

A: Modern solar panels typically last twenty to thirty years before there’s a noticeable increase in output loss. Most residential solar providers offer a 20- to 25-year warranty, but many such warranties only guarantee a certain power output (e.g., a guarantee of 80% output for twenty years). Carefully read through the fine print to make sure you understand the warranty and what it covers.

Additions of small amount (0.5 weight %) of nanoreinforcement (carbon nanotubes or nanoclay in the polymer matrix of composites, fiber sizing or interlaminar layers can allow to increase the fatigue resistance, shear or compressive strength as well as fracture toughness of the composites by 30–80%. Research has also shown that the incorporation of small amount of carbon nanotubes/CNT can increase the lifetime up to 1500%.
The most significant barriers to the widespread implementation of large-scale renewable energy and low carbon energy strategies are primarily political and not technological. According to the 2013 Post Carbon Pathways report, which reviewed many international studies, the key roadblocks are: climate change denial, the fossil fuels lobby, political inaction, unsustainable energy consumption, outdated energy infrastructure, and financial constraints.[155]

With Georgetown emerging as a brave new model for a renewable city, it makes sense to ask if others can achieve the same magical balance of more power, less pollution and lower costs. In fact, cities ranging from Orlando to St. Louis to San Francisco to Portland, Oregon, have pledged to run entirely on renewable energy. Those places are much larger than Georgetown, of course, and no one would expect misty Portland to power a light bulb for long with solar energy, which is crucial to Georgetown’s success. But beyond its modest size, abundant sunshine and archetype-busting mayor, Georgetown has another edge, one that’s connected to a cherished Lone Star ideal: freedom.
The trouble with rated power is that it does not tell you anything about energy production. Your utility company charges you for the energy you consume, not power. Likewise, for a small wind  turbine you should be interested in the energy it will produce, for your particular site, with your particular annual average wind speed. Rated power of the turbine does not do that. To find out about energy production take a look at the tables presented earlier.
“Trump’s Keystone XL Tar Sands Oil Pipeline Promise, Unkept and Undone” • The federal judge for the District of Montana who overturned permit for the Keystone XL pipeline issued an order that all but guarantees the project will die another death by a thousand cuts. He ordered a complete do-over on economic and environmental impacts. [CleanTechnica]
Solar power panels that use nanotechnology, which can create circuits out of individual silicon molecules, may cost half as much as traditional photovoltaic cells, according to executives and investors involved in developing the products. Nanosolar has secured more than $100 million from investors to build a factory for nanotechnology thin-film solar panels. The company's plant has a planned production capacity of 430 megawatts peak power of solar cells per year. Commercial production started and first panels have been shipped[50] to customers in late 2007.[51]

In an electricity system without grid energy storage, generation from stored fuels (coal, biomass, natural gas, nuclear) must be go up and down in reaction to the rise and fall of solar electricity (see load following power plant). While hydroelectric and natural gas plants can quickly follow solar being intermittent due to the weather, coal, biomass and nuclear plants usually take considerable time to respond to load and can only be scheduled to follow the predictable variation. Depending on local circumstances, beyond about 20–40% of total generation, grid-connected intermittent sources like solar tend to require investment in some combination of grid interconnections, energy storage or demand side management. Integrating large amounts of solar power with existing generation equipment has caused issues in some cases. For example, in Germany, California and Hawaii, electricity prices have been known to go negative when solar is generating a lot of power, displacing existing baseload generation contracts.[107][108]
One issue that has often raised concerns is the use of cadmium (Cd), a toxic heavy metal that has the tendency to accumulate in ecological food chains. It is used as semiconductor component in CdTe solar cells and as buffer layer for certain CIGS cells in the form of CdS.[141] The amount of cadmium used in thin-film PV modules is relatively small (5–10 g/m²) and with proper recycling and emission control techniques in place the cadmium emissions from module production can be almost zero. Current PV technologies lead to cadmium emissions of 0.3–0.9 microgram/kWh over the whole life-cycle.[121] Most of these emissions arise through the use of coal power for the manufacturing of the modules, and coal and lignite combustion leads to much higher emissions of cadmium. Life-cycle cadmium emissions from coal is 3.1 microgram/kWh, lignite 6.2, and natural gas 0.2 microgram/kWh.
The energy in the wind goes up with the cube of the wind speed. Double the wind speed and you have 2 * 2 * 2 = 8 times the energy! Sit back and let the full weight of that sink in for a moment: It means that even a small difference in annual average wind speed will make a BIG difference in how much your wind turbine will produce: Putting that turbine in a place that has just 10% more wind will net you 1.1 * 1.1 * 1.1 = 1.33 = a full 33% more energy!

Nuclear power. After coal, the next largest source of our electricity is nuclear power. While nuclear plants don't cause air pollution, they do create radioactive waste, which must be stored for thousands of years. As accidents at Three Mile Island and Chernobyl proved, nuclear plants also carry the risk of catastrophic failure. And nuclear power can be very expensive.
The most common type of residential solar is called solar PV. The PV stands for “photovoltaic,” and a solar PV system is a electrical system that consists of solar panels, an inverter, a meter, and a few other components (mounting, cabling, etc.). A solar PV system requires little to no maintenance for years, and if you’re in a place with the right amount of sunlight, you can end up saving money, while also going green.

One issue that has often raised concerns is the use of cadmium (Cd), a toxic heavy metal that has the tendency to accumulate in ecological food chains. It is used as semiconductor component in CdTe solar cells and as buffer layer for certain CIGS cells in the form of CdS.[141] The amount of cadmium used in thin-film PV modules is relatively small (5–10 g/m²) and with proper recycling and emission control techniques in place the cadmium emissions from module production can be almost zero. Current PV technologies lead to cadmium emissions of 0.3–0.9 microgram/kWh over the whole life-cycle.[121] Most of these emissions arise through the use of coal power for the manufacturing of the modules, and coal and lignite combustion leads to much higher emissions of cadmium. Life-cycle cadmium emissions from coal is 3.1 microgram/kWh, lignite 6.2, and natural gas 0.2 microgram/kWh.
U.S. President Barack Obama's American Recovery and Reinvestment Act of 2009 includes more than $70 billion in direct spending and tax credits for clean energy and associated transportation programs. Leading renewable energy companies include First Solar, Gamesa, GE Energy, Hanwha Q Cells, Sharp Solar, Siemens, SunOpta, Suntech Power, and Vestas.[142]
Previously, the largest U.S. city fully powered by renewables was Burlington, Vermont (pop. 42,000), home to Senator Bernie Sanders, the jam band Phish and the original Ben & Jerry’s. Georgetown’s feat is all the more dramatic because it demolishes the notion that sustainability is synonymous with socialism and GMO-free ice cream. “You think of climate change and renewable energy, from a political standpoint, on the left-hand side of the spectrum, and what I’ve done is toss all those partisan political thoughts aside,” Ross says. “We’re doing this because it’s good for our citizens. Cheaper electricity is better. Clean energy is better than fossil fuels.”
Solar energy is a flexible energy technology: it can be built as distributed generation (located at or near the point of use) or as a central-station, utility-scale solar power plant (similar to traditional power plants). Both of these methods can also store the energy they produce for distribution after the sun sets, using cutting edge solar + storage technologies.
While many renewable energy projects are large-scale, renewable technologies are also suited to rural and remote areas and developing countries, where energy is often crucial in human development.[13] Former United Nations Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity.[14] As most of renewables provide electricity, renewable energy deployment is often applied in conjunction with further electrification, which has several benefits: Electricity can be converted to heat (where necessary generating higher temperatures than fossil fuels), can be converted into mechanical energy with high efficiency and is clean at the point of consumption.[15][16] In addition to that electrification with renewable energy is much more efficient and therefore leads to a significant reduction in primary energy requirements, because most renewables don't have a steam cycle with high losses (fossil power plants usually have losses of 40 to 65%).[17]
The International Geothermal Association (IGA) has reported that 10,715 MW of geothermal power in 24 countries is online, which is expected to generate 67,246 GWh of electricity in 2010.[131] This represents a 20% increase in geothermal power online capacity since 2005. IGA projects this will grow to 18,500 MW by 2015, due to the large number of projects presently under consideration, often in areas previously assumed to have little exploitable resource.[131]
FEATURES: Integrated automatic braking system to protect from sudden and high wind speed. Easy DIY installation methods with all materials provided. Can be used in conjunction with solar panels. MPPT Maximum power point tracking built into the wind turbine generator. Made with high quality Polypropylene and Glass Fiber material with a weather resistant seal.
The generator, which is approximately 34% of the wind turbine cost, includes the electrical generator,[38][39] the control electronics, and most likely a gear box (e.g. planetary gear box),[40] adjustable-speed drive or continuously variable transmission[41] component for converting the low-speed incoming rotation to high-speed rotation suitable for generating electricity.
A solar power tower uses an array of tracking reflectors (heliostats) to concentrate light on a central receiver atop a tower. Power towers can achieve higher (thermal-to-electricity conversion) efficiency than linear tracking CSP schemes and better energy storage capability than dish stirling technologies.[14] The PS10 Solar Power Plant and PS20 solar power plant are examples of this technology.
×