A solar vehicle is an electric vehicle powered completely or significantly by direct solar energy. Usually, photovoltaic (PV) cells contained in solar panels convert the sun's energy directly into electric energy. The term "solar vehicle" usually implies that solar energy is used to power all or part of a vehicle's propulsion. Solar power may be also used to provide power for communications or controls or other auxiliary functions. Solar vehicles are not sold as practical day-to-day transportation devices at present, but are primarily demonstration vehicles and engineering exercises, often sponsored by government agencies. However, indirectly solar-charged vehicles are widespread and solar boats are available commercially.
Innovative programs around the country now make it possible for all environmentally conscious energy consumers to support renewable energy directly by participating in the "green" power market. The willingness to pay for the benefits of increasing our renewable energy supplies can be tapped within any market structure and by any size or type of energy consumer.
“Climate Change Helped Make California a Tinder Box for its Record-Setting Wildfires” • Camp Fire, which is devastating Sierra Nevada foothills, has become the most destructive wildfire in California’s history. By the evening of November 10, it had scorched 105,000 acres of land and killed 23 people, with more than 100 people still unaccounted for. [Quartz]
“[The maps] suggest that our 100 percent renewable energy purchasing goal — which relies on buying surplus renewable energy when it’s sunny and windy, to offset the lack of renewable energy supply in other situations — is an important first step toward achieving a fully carbon-free future,” Michael Terrell, Google’s head of energy markets, wrote in a blog post. “Ultimately, we aspire to source carbon-free energy for our operations in all places, at all times.”
Renewable energy resources exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency is resulting in significant energy security, climate change mitigation, and economic benefits.[8] The results of a recent review of the literature[9] concluded that as greenhouse gas (GHG) emitters begin to be held liable for damages resulting from GHG emissions resulting in climate change, a high value for liability mitigation would provide powerful incentives for deployment of renewable energy technologies. In international public opinion surveys there is strong support for promoting renewable sources such as solar power and wind power.[10] At the national level, at least 30 nations around the world already have renewable energy contributing more than 20 percent of energy supply. National renewable energy markets are projected to continue to grow strongly in the coming decade and beyond.[11] Some places and at least two countries, Iceland and Norway generate all their electricity using renewable energy already, and many other countries have the set a goal to reach 100% renewable energy in the future. For example, in Denmark the government decided to switch the total energy supply (electricity, mobility and heating/cooling) to 100% renewable energy by 2050.[12]

Although many older thermoelectric power plants with once-through cooling or cooling ponds use more water than CSP, meaning that more water passes through their systems, most of the cooling water returns to the water body available for other uses, and they consume less water by evaporation. For instance, the median coal power plant in the US with once-through cooling uses 36,350 gal/MWhr, but only 250 gal/MWhr (less than one percent) is lost through evaporation.[139] Since the 1970s, the majority of US power plants have used recirculating systems such as cooling towers rather than once-through systems.[140]

With advanced technology being developed, cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the United States and in Brazil. The energy costs for producing bio-ethanol are almost equal to, the energy yields from bio-ethanol. However, according to the European Environment Agency, biofuels do not address global warming concerns.[75] Biodiesel is made from vegetable oils, animal fats or recycled greases. It can be used as a fuel for vehicles in its pure form, or more commonly as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe. Biofuels provided 2.7% of the world's transport fuel in 2010.[76]
Turbines used in wind farms for commercial production of electric power are usually three-bladed. These have low torque ripple, which contributes to good reliability. The blades are usually colored white for daytime visibility by aircraft and range in length from 20 to 80 meters (66 to 262 ft). The size and height of turbines increase year by year. Offshore wind turbines are built up to 8(MW) today and have a blade length up to 80 meters (260 ft). Usual tubular steel towers of multi megawatt turbines have a height of 70 m to 120 m and in extremes up to 160 m.

He was able to begin installation sooner than promised. The finished product looks great. The exterior industrial grade electrical work they did looks stylish. The workers kept a clean job site and fully cleaned up, leaving my place neater than before they began. The workers were knowledgeable and helpful. Other than wishing that it was free, I don't know what they could have done better. I give them my highest recommendation because of a job superbly done.... read more
Geothermal energy - Just under the earth's crust are massive amounts of thermal energy, which originates from both the original formation of the planet and the radioactive decay of minerals. Geothermal energy in the form of hot springs has been used by humans for millennia for bathing, and now it's being used to generate electricity. In North America alone, there's enough energy stored underground to produce 10 times as much electricity as coal currently does.
In stand alone PV systems batteries are traditionally used to store excess electricity. With grid-connected photovoltaic power system, excess electricity can be sent to the electrical grid. Net metering and feed-in tariff programs give these systems a credit for the electricity they produce. This credit offsets electricity provided from the grid when the system cannot meet demand, effectively trading with the grid instead of storing excess electricity. Credits are normally rolled over from month to month and any remaining surplus settled annually.[111] When wind and solar are a small fraction of the grid power, other generation techniques can adjust their output appropriately, but as these forms of variable power grow, additional balance on the grid is needed. As prices are rapidly declining, PV systems increasingly use rechargeable batteries to store a surplus to be later used at night. Batteries used for grid-storage stabilize the electrical grid by leveling out peak loads usually for several minutes, and in rare cases for hours. In the future, less expensive batteries could play an important role on the electrical grid, as they can charge during periods when generation exceeds demand and feed their stored energy into the grid when demand is higher than generation.
This listing is for: One Heavy 100 Amp Rectifier ---Heavy quality rectifier intended for wind turbine rated for 100 amps continuous usage. ---This item is used to convert 3 phase AC to DC. This heavy rectifier is built into a heat sink body that allows unit to keep cool. ---Rectifier has spade terminals which will make for a clean and secure installation. No wondering if your wiring is going to come loose. ---Two mounting holes to secure the body of the rectifier to your mounting box ---This item is not to me confused with a blocking diode to be used in DC motor applications or with solar. Powered by [eBay Turbo Lister] (http://pages.ebay.com/turbo_lister/) The free listing tool. List your items fast and easy and manage your active items. Froo www.froo.
Solar power - The most prevalent type of renewable energy, solar power is typically produced using photovoltaic cells, which capture sunlight and turn it into electricity. Solar energy is also used to heat buildings and water, provide natural lighting and cook food. Solar technologies have become inexpensive enough to power everything from small hand-held gadgets to entire neighborhoods.
Low Temperature Geothermal[29] refers to the use of the outer crust of the earth as a Thermal Battery to facilitate Renewable thermal energy for heating and cooling buildings, and other refrigeration and industrial uses. In this form of Geothermal, a Geothermal Heat Pump and Ground-coupled heat exchanger are used together to move heat energy into the earth (for cooling) and out of the earth (for heating) on a varying seasonal basis. Low temperature Geothermal (generally referred to as "GHP") is an increasingly important renewable technology because it both reduces total annual energy loads associated with heating and cooling, and it also flattens the electric demand curve eliminating the extreme summer and winter peak electric supply requirements. Thus Low Temperature Geothermal/GHP is becoming an increasing national priority with multiple tax credit support[60] and focus as part of the ongoing movement toward Net Zero Energy.[61][30] New York City has even just passed a law[62] to require GHP anytime is shown to be economical with 20 year financing including the Socialized Cost of Carbon.[63][64]
“Hurricane-Broken Air Power Base Has an Alternative to Rebuild for Resilience” • Rebuilding the hurricane-wrecked Tyndall Air Force Base in Florida will come with a massive price tag, but experts say it offers a chance to make the base more resilient to the effects of extreme weather. Hurricane Michael hit Tyndall as a Category 4 storm. [Infosurhoy]
Electricity for my off-grid cabin comes from solar and wind power stored in a bank of four 6-volt golf cart batteries wired for a 12-volt system. A charge controller and battery minder keep my system from under- or overcharging. The whole shebang cost me less than $1,000, and I have lights, fans, a television and stereo, refrigeration, and a disco ball that goes up for special occasions.
Smart grid refers to a class of technology people are using to bring utility electricity delivery systems into the 21st century, using computer-based remote control and automation.[65] These systems are made possible by two-way communication technology and computer processing that has been used for decades in other industries. They are beginning to be used on electricity networks, from the power plants and wind farms all the way to the consumers of electricity in homes and businesses. They offer many benefits to utilities and consumers—mostly seen in big improvements in energy efficiency on the electricity grid and in the energy users’ homes and offices.[65]

http://WINDENERGY7.com - Home Wind Generator for sale and Home Wind Generator kits from WindEnergy7 and Ohio manufacturer of home energy products. If you are looking for a home wind generator, home wind generator system, home vertical wind generator, small home wind generator, home wind generator kit, home wind generator plans, home wind electric generator, home wind power generator, rooftop wind generator, then come to our website to SEE LATEST VIDEOS: http://WindEnergy7.com

Renewable energy is derived from natural processes that are replenished constantly. In its various forms, it derives directly from the sun, or from heat generated deep within the earth. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and biofuels and hydrogen derived from renewable resources.

Thirty years ago Bergey pioneered the radically-simple “Bergey design” that has proven to provide the best reliability, performance, service life, and value of all of the hundreds of competitive products that have come and gone in that time. With only three moving parts and no scheduled maintenance necessary, the Bergey 10 kW has compiled a service record that no other wind turbine can match. We back it up with the longest warranty in the industry.
Wind-to-rotor efficiency (including rotor blade friction and drag) are among the factors impacting the final price of wind power.[16] Further inefficiencies, such as gearbox losses, generator and converter losses, reduce the power delivered by a wind turbine. To protect components from undue wear, extracted power is held constant above the rated operating speed as theoretical power increases at the cube of wind speed, further reducing theoretical efficiency. In 2001, commercial utility-connected turbines deliver 75% to 80% of the Betz limit of power extractable from the wind, at rated operating speed.[17][18][needs update]
The terms wind energy or wind power describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity.
Index of solar energy articles List of concentrating solar thermal power companies List of photovoltaics companies List of photovoltaic power stations List of pioneering solar buildings List of rooftop photovoltaic installations List of solar car teams List of solar powered products List of solar thermal power stations People associated with solar power
So how do wind turbines make electricity? Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity. View the wind turbine animation to see how a wind turbine works or take a look inside.
Thermal storage technologies allow heat or cold to be stored for periods of time ranging from hours or overnight to interseasonal, and can involve storage of sensible energy (i.e. by changing the temperature of a medium) or latent energy (i.e. through phase changes of a medium, such between water and slush or ice). Short-term thermal storages can be used for peak-shaving in district heating or electrical distribution systems. Kinds of renewable or alternative energy sources that can be enabled include natural energy (e.g. collected via solar-thermal collectors, or dry cooling towers used to collect winter's cold), waste energy (e.g. from HVAC equipment, industrial processes or power plants), or surplus energy (e.g. as seasonally from hydropower projects or intermittently from wind farms). The Drake Landing Solar Community (Alberta, Canada) is illustrative. borehole thermal energy storage allows the community to get 97% of its year-round heat from solar collectors on the garage roofs, which most of the heat collected in summer.[58][59] Types of storages for sensible energy include insulated tanks, borehole clusters in substrates ranging from gravel to bedrock, deep aquifers, or shallow lined pits that are insulated on top. Some types of storage are capable of storing heat or cold between opposing seasons (particularly if very large), and some storage applications require inclusion of a heat pump. Latent heat is typically stored in ice tanks or what are called phase-change materials (PCMs).
Electricity produced by wind generators can be used directly, as in water pumping applications, or it can be stored in batteries for later use. Wind generators can be used alone, or they may be used as part of a hybrid system, in which their output is combined with that of solar panels, and /or a fossil fuel generator. Hybrid systems are especially useful for winter backup of home systems where cloudy weather and windy conditions occur simultaneously.
The overwhelming majority of electricity produced worldwide is used immediately, since storage is usually more expensive and because traditional generators can adapt to demand. However both solar power and wind power are variable renewable energy, meaning that all available output must be taken whenever it is available by moving through transmission lines to where it can be used now. Since solar energy is not available at night, storing its energy is potentially an important issue particularly in off-grid and for future 100% renewable energy scenarios to have continuous electricity availability.[106]
“[The maps] suggest that our 100 percent renewable energy purchasing goal — which relies on buying surplus renewable energy when it’s sunny and windy, to offset the lack of renewable energy supply in other situations — is an important first step toward achieving a fully carbon-free future,” Michael Terrell, Google’s head of energy markets, wrote in a blog post. “Ultimately, we aspire to source carbon-free energy for our operations in all places, at all times.”
The life-cycle greenhouse-gas emissions of solar power are in the range of 22 to 46 gram (g) per kilowatt-hour (kWh) depending on if solar thermal or solar PV is being analyzed, respectively. With this potentially being decreased to 15 g/kWh in the future.[121] For comparison (of weighted averages), a combined cycle gas-fired power plant emits some 400–599 g/kWh,[122] an oil-fired power plant 893 g/kWh,[122] a coal-fired power plant 915–994 g/kWh[123] or with carbon capture and storage some 200 g/kWh, and a geothermal high-temp. power plant 91–122 g/kWh.[122] The life cycle emission intensity of hydro, wind and nuclear power are lower than solar's as of 2011 as published by the IPCC, and discussed in the article Life-cycle greenhouse-gas emissions of energy sources. Similar to all energy sources were their total life cycle emissions primarily lay in the construction and transportation phase, the switch to low carbon power in the manufacturing and transportation of solar devices would further reduce carbon emissions. BP Solar owns two factories built by Solarex (one in Maryland, the other in Virginia) in which all of the energy used to manufacture solar panels is produced by solar panels. A 1-kilowatt system eliminates the burning of approximately 170 pounds of coal, 300 pounds of carbon dioxide from being released into the atmosphere, and saves up to 105 gallons of water consumption monthly.[124]
In 2007, the US Congress directed the Department of Energy to report on ways to reduce water consumption by CSP. The subsequent report noted that dry cooling technology was available that, although more expensive to build and operate, could reduce water consumption by CSP by 91 to 95 percent. A hybrid wet/dry cooling system could reduce water consumption by 32 to 58 percent.[138] A 2015 report by NREL noted that of the 24 operating CSP power plants in the US, 4 used dry cooling systems. The four dry-cooled systems were the three power plants at the Ivanpah Solar Power Facility near Barstow, California, and the Genesis Solar Energy Project in Riverside County, California. Of 15 CSP projects under construction or development in the US as of March 2015, 6 were wet systems, 7 were dry systems, 1 hybrid, and 1 unspecified.
Prior to the development of coal in the mid 19th century, nearly all energy used was renewable. Almost without a doubt the oldest known use of renewable energy, in the form of traditional biomass to fuel fires, dates from 790,000 years ago. Use of biomass for fire did not become commonplace until many hundreds of thousands of years later, sometime between 200,000 and 400,000 years ago.[31] Probably the second oldest usage of renewable energy is harnessing the wind in order to drive ships over water. This practice can be traced back some 7000 years, to ships in the Persian Gulf[32] and on the Nile.[33] Moving into the time of recorded history, the primary sources of traditional renewable energy were human labor, animal power, water power, wind, in grain crushing windmills,[32] and firewood, a traditional biomass. A graph of energy use in the United States up until 1900 shows oil and natural gas with about the same importance in 1900 as wind and solar played in 2010.
Wind turbines allow us to harness the power of the wind and turn it into energy. When the wind blows, the turbine's blades spin clockwise, capturing energy. This triggers the main shaft, connected to a gearbox within the nacelle, to spin. The gearbox sends that energy to the generator, converting it to electricity. Electricity then travels down the tower to a transformer, where voltage levels are adjusted to match with the grid.

Dale Ross, the mayor of Georgetown, Texas, has a big smile, a big handshake and a big personality. In last year’s election, he won big, with 72 percent of the vote. The key to his success? “Without being too self-reflective,” he says, “I just like people.” He’s a Republican, and his priorities are party staples: go light on regulation, be tough on crime, keep taxes low. But the thing that is winning him international renown is straight out of the liberal playbook—green power. Thanks to his (big) advocacy, Georgetown (pop. 67,000) last year became the largest city in the United States to be powered entirely by renewable energy.

There is more trouble with rated power: It only happens at a “rated wind speed”. And the trouble with that is there is no standard for rated wind speed. Since the energy in the wind increases with the cube of the wind speed, it makes a very large difference if rated power is measured at 10 m/s (22 mph), or 12 m/s (27 mph). For example, that 6 meter wind turbine from the previous section could reasonably be expected to produce 5.2 kW at 10 m/s, while it will do 9 kW at 12 m/s!
For a decade now, we’ve stopped this project in its tracks. Thousands of us have shown up at public hearings, tens of thousand of us have marched in the streets, hundreds of thousands of us have taken action. We’ve made phone calls, we’ve rallied at the white house, we’ve organized, worked in solidarity with the tribes and now, a talented group of pro-environment lawyers have held the Trump administration accountable in court. 

With feed-in tariffs, the financial burden falls upon the consumer. They reward the number of kilowatt-hours produced over a long period of time, but because the rate is set by the authorities, it may result in perceived overpayment. The price paid per kilowatt-hour under a feed-in tariff exceeds the price of grid electricity. Net metering refers to the case where the price paid by the utility is the same as the price charged.