It is possible to use any type of solar thermal panel (sheet and tubes, roll-bond, heat pipe, thermal plates) or hybrid (mono/polycrystalline, thin film) in combination with the heat pump. The use of a hybrid panel is preferable because it allows covering a part of the electricity demand of the heat pump and reduce the power consumption and consequently the variable costs of the system.
By now you are probably thinking “why would these guys tell me the truth? They sell small wind turbines!”. Yup, guilty as charged. We also want happy customers, and the two are not reconcilable unless we are upfront with you, our customer. Truth is, wind turbine sales are a tiny part of our revenue, and while we would regret losing you, we will still be able to put food on our kids’ plates.
Although many older thermoelectric power plants with once-through cooling or cooling ponds use more water than CSP, meaning that more water passes through their systems, most of the cooling water returns to the water body available for other uses, and they consume less water by evaporation. For instance, the median coal power plant in the US with once-through cooling uses 36,350 gal/MWhr, but only 250 gal/MWhr (less than one percent) is lost through evaporation.[139] Since the 1970s, the majority of US power plants have used recirculating systems such as cooling towers rather than once-through systems.[140]
Research is also undertaken in this field of artificial photosynthesis. It involves the use of nanotechnology to store solar electromagnetic energy in chemical bonds, by splitting water to produce hydrogen fuel or then combining with carbon dioxide to make biopolymers such as methanol. Many large national and regional research projects on artificial photosynthesis are now trying to develop techniques integrating improved light capture, quantum coherence methods of electron transfer and cheap catalytic materials that operate under a variety of atmospheric conditions.[119] Senior researchers in the field have made the public policy case for a Global Project on Artificial Photosynthesis to address critical energy security and environmental sustainability issues.[120]
In cases of self consumption of the solar energy, the payback time is calculated based on how much electricity is not purchased from the grid. For example, in Germany, with electricity prices of 0.25 €/kWh and insolation of 900 kWh/kW, one kWp will save €225 per year, and with an installation cost of 1700 €/KWp the system cost will be returned in less than seven years.[91] However, in many cases, the patterns of generation and consumption do not coincide, and some or all of the energy is fed back into the grid. The electricity is sold, and at other times when energy is taken from the grid, electricity is bought. The relative costs and prices obtained affect the economics. In many markets, the price paid for sold PV electricity is significantly lower than the price of bought electricity, which incentivizes self consumption.[92] Moreover, separate self consumption incentives have been used in e.g. Germany and Italy.[92] Grid interaction regulation has also included limitations of grid feed-in in some regions in Germany with high amounts of installed PV capacity.[92][93] By increasing self consumption, the grid feed-in can be limited without curtailment, which wastes electricity.[94]

So how do wind turbines make electricity? Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity. View the wind turbine animation to see how a wind turbine works or take a look inside.
Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18 percent of the country's automotive fuel. As a result of this, together with the exploitation of domestic deep water oil sources, Brazil, which years ago had to import a large share of the petroleum needed for domestic consumption, recently reached complete self-sufficiency in oil.[36][37][38]
At the end of 2014, worldwide PV capacity reached at least 177,000 megawatts. Photovoltaics grew fastest in China, followed by Japan and the United States, while Germany remains the world's largest overall producer of photovoltaic power, contributing about 7.0 percent to the overall electricity generation. Italy meets 7.9 percent of its electricity demands with photovoltaic power—the highest share worldwide.[119] For 2015, global cumulative capacity is forecasted to increase by more than 50 gigawatts (GW). By 2018, worldwide capacity is projected to reach as much as 430 gigawatts. This corresponds to a tripling within five years.[120] Solar power is forecasted to become the world's largest source of electricity by 2050, with solar photovoltaics and concentrated solar power contributing 16% and 11%, respectively. This requires an increase of installed PV capacity to 4,600 GW, of which more than half is expected to be deployed in China and India.[121]

Green power is a subset of renewable energy and represents those renewable energy resources and technologies that provide the highest environmental benefit. The U.S. Environmental Protection Agency defines green power as electricity produced from solar, wind, geothermal, biogas, biomass and low-impact small hydroelectric sources. Customers often buy green power for avoided environmental impacts and its greenhouse gas reduction benefits.[9]
Solar water heating makes an important contribution to renewable heat in many countries, most notably in China, which now has 70% of the global total (180 GWth). Most of these systems are installed on multi-family apartment buildings and meet a portion of the hot water needs of an estimated 50–60 million households in China. Worldwide, total installed solar water heating systems meet a portion of the water heating needs of over 70 million households. The use of biomass for heating continues to grow as well. In Sweden, national use of biomass energy has surpassed that of oil. Direct geothermal for heating is also growing rapidly.[28] The newest addition to Heating is from Geothermal Heat Pumps which provide both heating and cooling, and also flatten the electric demand curve and are thus an increasing national priority[29][30] (see also Renewable thermal energy).
The market for renewable energy technologies has continued to grow. Climate change concerns and increasing in green jobs, coupled with high oil prices, peak oil, oil wars, oil spills, promotion of electric vehicles and renewable electricity, nuclear disasters and increasing government support, are driving increasing renewable energy legislation, incentives and commercialization.[10] New government spending, regulation and policies helped the industry weather the 2009 economic crisis better than many other sectors.[24][197]
Climate change concerns coupled with high oil prices and increasing government support are driving increasing rates of investment in the sustainable energy industries, according to a trend analysis from the United Nations Environment Programme. According to UNEP, global investment in sustainable energy in 2007 was higher than previous levels, with $148 billion of new money raised in 2007, an increase of 60% over 2006. Total financial transactions in sustainable energy, including acquisition activity, was $204 billion.[64]

Many industrialized nations have installed significant solar power capacity into their grids to supplement or provide an alternative to conventional energy sources while an increasing number of less developed nations have turned to solar to reduce dependence on expensive imported fuels (see solar power by country). Long distance transmission allows remote renewable energy resources to displace fossil fuel consumption. Solar power plants use one of two technologies:
×