When a turbine is mounted on a rooftop the building generally redirects wind over the roof and this can double the wind speed at the turbine. If the height of a rooftop mounted turbine tower is approximately 50% of the building height it is near the optimum for maximum wind energy and minimum wind turbulence. While wind speeds within the built environment are generally much lower than at exposed rural sites,[29][30] noise may be a concern and an existing structure may not adequately resist the additional stress.
Several large-scale energy storage suggestions for the grid have been done. Worldwide there is over 100 GW of Pumped-storage hydroelectricity. This improves efficiency and decreases energy losses but a conversion to an energy storing mains electricity grid is a very costly solution. Some costs could potentially be reduced by making use of energy storage equipment the consumer buys and not the state. An example is batteries in electric cars that would double as an energy buffer for the electricity grid. However besides the cost, setting-up such a system would still be a very complicated and difficult procedure. Also, energy storage apparatus' as car batteries are also built with materials that pose a threat to the environment (e.g. Lithium). The combined production of batteries for such a large part of the population would still have environmental concerns. Besides car batteries however, other Grid energy storage projects make use of less polluting energy carriers (e.g. compressed air tanks and flywheel energy storage).

The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. Charles Fritts installed the world's first rooftop photovoltaic solar array, using 1%-efficient selenium cells, on a New York City roof in 1884.[28] However, development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum.[29] In 1974 it was estimated that only six private homes in all of North America were entirely heated or cooled by functional solar power systems.[30] The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies.[31][32] Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the United States (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer–ISE).[33] Between 1970 and 1983 installations of photovoltaic systems grew rapidly, but falling oil prices in the early 1980s moderated the growth of photovoltaics from 1984 to 1996.
Although many older thermoelectric power plants with once-through cooling or cooling ponds use more water than CSP, meaning that more water passes through their systems, most of the cooling water returns to the water body available for other uses, and they consume less water by evaporation. For instance, the median coal power plant in the US with once-through cooling uses 36,350 gal/MWhr, but only 250 gal/MWhr (less than one percent) is lost through evaporation.[139] Since the 1970s, the majority of US power plants have used recirculating systems such as cooling towers rather than once-through systems.[140]
^ Jump up to: a b Werner, Jürgen H. (2 November 2011). "Toxic Substances In Photovoltaic Modules" (PDF). postfreemarket.net. Institute of Photovoltaics, University of Stuttgart, Germany - The 21st International Photovoltaic Science and Engineering Conference 2011 Fukuoka, Japan. p. 2. Archived from the original (PDF) on 23 September 2014. Retrieved 23 September 2014.

Sustainable energy is energy that is consumed at insignificant rates compared to its supply and with manageable collateral effects, especially environmental effects. Another common definition of sustainable energy is an energy system that serves the needs of the present without compromising the ability of future generations to meet their energy needs.[1] Not all renewable energy is sustainable. While renewable energy is defined as energy sources that are naturally replenished on a human timescale, sustainable (often referred to as 'clean') energy must not compromise the system in which it is adopted to the point of being unable to provide for future need. The organizing principle for sustainability is sustainable development, which includes the four interconnected domains: ecology, economics, politics and culture.[2] Sustainability science is the study of sustainable development and environmental science.[3]
In the mid-1990s, development of both, residential and commercial rooftop solar as well as utility-scale photovoltaic power stations, began to accelerate again due to supply issues with oil and natural gas, global warming concerns, and the improving economic position of PV relative to other energy technologies.[34] In the early 2000s, the adoption of feed-in tariffs—a policy mechanism, that gives renewables priority on the grid and defines a fixed price for the generated electricity—led to a high level of investment security and to a soaring number of PV deployments in Europe.
Many industrialized nations have installed significant solar power capacity into their grids to supplement or provide an alternative to conventional energy sources while an increasing number of less developed nations have turned to solar to reduce dependence on expensive imported fuels (see solar power by country). Long distance transmission allows remote renewable energy resources to displace fossil fuel consumption. Solar power plants use one of two technologies:
×