Permanent magnets for wind turbine generators contain rare earth metals such as Nd, Pr, Tb, and Dy. Systems that use magnetic direct drive turbines require higher amounts of rare metals. Therefore, an increase in wind production would increase the demand for these resources. It is estimated that the additional demand for Nd in 2035 may be 4,000 to 18,000 tons and Dy could see an increase of 200 to 1200 tons. These values represent a quarter to half of current production levels. However, since technologies are developing rapidly, driven by supply and price of materials these estimated levels are extremely uncertain.[55]
Renewable energy is derived from natural processes that are replenished constantly. In its various forms, it derives directly from the sun, or from heat generated deep within the earth. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and biofuels and hydrogen derived from renewable resources.

A Darrieus type vertical axis wind turbine (the egg-beater type) can in theory work almost as good as a horizontal axis turbine. Actual measurement of one of the better designs out there, the UGE VisionAir5, does not bear that out though: It measures in at a pitiful 11% efficiency at 11 m/s wind speed, while a Bergey Excel-6 HAWT clocks in at 22% efficiency for that same wind speed, twice as much. You can read about it in Paul Gipe’s article.  Besides efficiency issues, a Darrieus VAWT unfortunately has a number of inherent issues that put them at a disadvantage: Since they are usually tall and relatively narrow structures the bending forces on their main bearing (at the bottom) are very large. There are similar issues with the forces on the blades. This means that to make a reliable vertical axis turbine takes more material, and more expensive materials, in comparison to a horizontal type turbine. For comparison, that same UGE VisionAir5 weighs 756 kg vs. the Bergey Excel-6 at 350 kg. Keep in mind that the UGE turbine only sweeps about half the area of the Bergey, the latter is a much larger turbine! This makes VAWTs inherently more expensive, or less reliable, or both.
Outline of energy Energy Units Conservation of energy Energetics Energy transformation Energy condition Energy transition Energy level Energy system Mass Negative mass Mass–energy equivalence Power Thermodynamics Quantum thermodynamics Laws of thermodynamics Thermodynamic system Thermodynamic state Thermodynamic potential Thermodynamic free energy Irreversible process Thermal reservoir Heat transfer Heat capacity Volume (thermodynamics) Thermodynamic equilibrium Thermal equilibrium Thermodynamic temperature Isolated system Entropy Free entropy Entropic force Negentropy Work Exergy Enthalpy
Another situation where a small wind turbine can make good sense is in case your province, state, or country has rebates or other incentives that make it cheap to install one (just keep ongoing maintenance and repair cost in mind as well). While we would like to advocate responsible spending of government money, the small wind industry needs many more customers to mature. It takes time and installation numbers for manufacturers to work out the bugs, make better turbines, and make them cheaper.
By participating in a green energy program a consumer may be having an effect on the energy sources used and ultimately might be helping to promote and expand the use of green energy. They are also making a statement to policy makers that they are willing to pay a price premium to support renewable energy. Green energy consumers either obligate the utility companies to increase the amount of green energy that they purchase from the pool (so decreasing the amount of non-green energy they purchase), or directly fund the green energy through a green power provider. If insufficient green energy sources are available, the utility must develop new ones or contract with a third party energy supplier to provide green energy, causing more to be built. However, there is no way the consumer can check whether or not the electricity bought is "green" or otherwise.
Many companies are taking the push for 100 percent renewables seriously because they see it as good business — not just today, but for the long term. At the time of publication, 152 companies of various sizes have made a commitment to go 100 percent renewable through RE100. Big names like Apple and Google have already met their targets, while other companies are looking out further into the future, some as far as 2040. That timeline indicates companies are looking beyond today’s prices and present-day marketing benefits.
Wind turbines need wind. Not just any wind, but the nicely flowing, smooth, laminar kind. That cannot be found at 30 feet height. It can usually not be found at 60 feet. Sometimes you find it at 80 feet. More often than not it takes 100 feet of tower to get there. Those towers cost as much or more, installed, as the turbine itself. How much tower you need for a wind turbine to live up to its potential depends on your particular site; on the trees and structures around it etc. Close to the ground the wind is turbulent, and makes a poor fuel for a small wind turbine.
DOE selected six companies for its 2007 Green Power Supplier Awards, including Constellation NewEnergy; 3Degrees; Sterling Planet; SunEdison; Pacific Power and Rocky Mountain Power; and Silicon Valley Power. The combined green power provided by those six winners equals more than 5 billion kilowatt-hours per year, which is enough to power nearly 465,000 average U.S. households. In 2014, Arcadia Power made RECS available to homes and businesses in all 50 states, allowing consumers to use "100% green power" as defined by the EPA's Green Power Partnership.[86][87]
This solar resource map provides a summary of the estimated solar energy available for power generation and other energy applications. It represents the average daily/yearly sum of electricity production from a 1 kW-peak grid-connected solar PV power plant covering the period from 1994/1999/2007 (depending on the geographical region) to 2015. Source: Global Solar Atlas]
×