A high-capacity light-weight portable power source for juicing A high-capacity light-weight portable power source for juicing up your personal and household electronic devices power tools appliances and more. Whether you're you an outdoor enthusiast/field professional operating in off-the-grid locations or a home-owner worried about power outages the Bayoutech Mobile Power is your perfect solution that charges up on-the-go ...  More + Product Details Close
A hybrid system combines (C)PV and CSP with one another or with other forms of generation such as diesel, wind and biogas. The combined form of generation may enable the system to modulate power output as a function of demand or at least reduce the fluctuating nature of solar power and the consumption of non renewable fuel. Hybrid systems are most often found on islands.
Wind-generated electricity met nearly 4% of global electricity demand in 2015, with nearly 63 GW of new wind power capacity installed. Wind energy was the leading source of new capacity in Europe, the US and Canada, and the second largest in China. In Denmark, wind energy met more than 40% of its electricity demand while Ireland, Portugal and Spain each met nearly 20%.
From the end of 2004, worldwide renewable energy capacity grew at rates of 10–60% annually for many technologies. In 2015 global investment in renewables rose 5% to $285.9 billion, breaking the previous record of $278.5 billion in 2011. 2015 was also the first year that saw renewables, excluding large hydro, account for the majority of all new power capacity (134 GW, making up 53.6% of the total). Of the renewables total, wind accounted for 72 GW and solar photovoltaics 56 GW; both record-breaking numbers and sharply up from 2014 figures (49 GW and 45 GW respectively). In financial terms, solar made up 56% of total new investment and wind accounted for 38%.
In Denmark by 1900, there were about 2500 windmills for mechanical loads such as pumps and mills, producing an estimated combined peak power of about 30 (MW). The largest machines were on 24-meter (79 ft) towers with four-bladed 23-meter (75 ft) diameter rotors. By 1908 there were 72 wind-driven electric generators operating in the United States from 5 kW to 25 kW. Around the time of World War I, American windmill makers were producing 100,000 farm windmills each year, mostly for water-pumping.[9]

Biofuels include a wide range of fuels which are derived from biomass. The term covers solid, liquid, and gaseous fuels.[73] Liquid biofuels include bioalcohols, such as bioethanol, and oils, such as biodiesel. Gaseous biofuels include biogas, landfill gas and synthetic gas. Bioethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. These include maize, sugarcane and, more recently, sweet sorghum. The latter crop is particularly suitable for growing in dryland conditions, and is being investigated by International Crops Research Institute for the Semi-Arid Tropics for its potential to provide fuel, along with food and animal feed, in arid parts of Asia and Africa.[74]
Manufacturers often claim that their vertical axis turbine is superior to a horizontal one, because it always faces the wind. So does any horizontal axis turbine, thanks to their tail or yaw mechanism. If the airflow is such that wind directions change drastically from one second to the next it means you have lots of turbulence, and that means it is a poor place to put any wind turbine, HAWT or VAWT.
Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources such as trees and grasses is also being developed as a feedstock for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the USA and in Brazil. Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe.
Usually however, renewable energy is derived from the mains electricity grid. This means that energy storage is mostly not used, as the mains electricity grid is organised to produce the exact amount of energy being consumed at that particular moment. Energy production on the mains electricity grid is always set up as a combination of (large-scale) renewable energy plants, as well as other power plants as fossil-fuel power plants and nuclear power. This combination however, which is essential for this type of energy supply (as e.g. wind turbines, solar power plants etc.) can only produce when the wind blows and the sun shines. This is also one of the main drawbacks of the system as fossil fuel powerplants are polluting and are a main cause of global warming (nuclear power being an exception). Although fossil fuel power plants too can be made emissionless (through carbon capture and storage), as well as renewable (if the plants are converted to e.g. biomass) the best solution is still to phase out the latter power plants over time. Nuclear power plants too can be more or less eliminated from their problem of nuclear waste through the use of nuclear reprocessing and newer plants as fast breeder and nuclear fusion plants.
Thermal storage technologies allow heat or cold to be stored for periods of time ranging from hours or overnight to interseasonal, and can involve storage of sensible energy (i.e. by changing the temperature of a medium) or latent energy (i.e. through phase changes of a medium, such between water and slush or ice). Short-term thermal storages can be used for peak-shaving in district heating or electrical distribution systems. Kinds of renewable or alternative energy sources that can be enabled include natural energy (e.g. collected via solar-thermal collectors, or dry cooling towers used to collect winter's cold), waste energy (e.g. from HVAC equipment, industrial processes or power plants), or surplus energy (e.g. as seasonally from hydropower projects or intermittently from wind farms). The Drake Landing Solar Community (Alberta, Canada) is illustrative. borehole thermal energy storage allows the community to get 97% of its year-round heat from solar collectors on the garage roofs, which most of the heat collected in summer.[58][59] Types of storages for sensible energy include insulated tanks, borehole clusters in substrates ranging from gravel to bedrock, deep aquifers, or shallow lined pits that are insulated on top. Some types of storage are capable of storing heat or cold between opposing seasons (particularly if very large), and some storage applications require inclusion of a heat pump. Latent heat is typically stored in ice tanks or what are called phase-change materials (PCMs).
The advantage of this approach in the United States is that many states offer incentives to offset the cost of installation of a renewable energy system. In California, Massachusetts and several other U.S. states, a new approach to community energy supply called Community Choice Aggregation has provided communities with the means to solicit a competitive electricity supplier and use municipal revenue bonds to finance development of local green energy resources. Individuals are usually assured that the electricity they are using is actually produced from a green energy source that they control. Once the system is paid for, the owner of a renewable energy system will be producing their own renewable electricity for essentially no cost and can sell the excess to the local utility at a profit.
The incentive to use 100% renewable energy, for electricity, transport, or even total primary energy supply globally, has been motivated by global warming and other ecological as well as economic concerns. The Intergovernmental Panel on Climate Change has said that there are few fundamental technological limits to integrating a portfolio of renewable energy technologies to meet most of total global energy demand. Renewable energy use has grown much faster than even advocates anticipated.[148] At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. Also, Professors S. Pacala and Robert H. Socolow have developed a series of "stabilization wedges" that can allow us to maintain our quality of life while avoiding catastrophic climate change, and "renewable energy sources," in aggregate, constitute the largest number of their "wedges".[149]
Ross, something of a libertarian at heart, entered politics because he was ticked off that the municipal code prohibited him from paving the driveway to his historic home entirely in period-appropriate brick. (The code required some concrete.) He joined the city council in 2008 and was elected to his first term as mayor in 2014. He often likens the city to “Mayberry R.F.D.,” and it does have a town square with a courthouse, a coffee shop where you’re bound to run into people you know and a swimming hole. But it also has Southwestern University, and in 2010 university officials, following a student initiative, told the city council they wanted their electricity to come from renewable sources. The city had already set a goal of getting 30 percent of its power that way, but now, Ross and his colleagues saw their opportunity.
Previously, the largest U.S. city fully powered by renewables was Burlington, Vermont (pop. 42,000), home to Senator Bernie Sanders, the jam band Phish and the original Ben & Jerry’s. Georgetown’s feat is all the more dramatic because it demolishes the notion that sustainability is synonymous with socialism and GMO-free ice cream. “You think of climate change and renewable energy, from a political standpoint, on the left-hand side of the spectrum, and what I’ve done is toss all those partisan political thoughts aside,” Ross says. “We’re doing this because it’s good for our citizens. Cheaper electricity is better. Clean energy is better than fossil fuels.”
A report by the United States Geological Survey estimated the projected materials requirement in order to fulfill the US commitment to supplying 20% of its electricity from wind power by 2030. They did not address requirements for small turbines or offshore turbines since those were not widely deployed in 2008, when the study was created. They found that there are increases in common materials such as cast iron, steel and concrete that represent 2–3% of the material consumption in 2008. Between 110,000 and 115,000 metric tons of fiber glass would be required annually, equivalent to 14% of consumption in 2008. They did not see a high increase in demand for rare metals compared to available supply, however rare metals that are also being used for other technologies such as batteries which are increasing its global demand need to be taken into account. Land, whbich might not be considered a material, is an important resource in deploying wind technologies. Reaching the 2030 goal would require 50,000 square kilometers of onshore land area and 11,000 square kilometers of offshore. This is not considered a problem in the US due to its vast area and the ability to use land for farming and grazing. A greater limitation for the technology would be the variability and transmission infrastructure to areas of higher demand.[54]
In 2010, the United States led the world in geothermal electricity production with 3,086 MW of installed capacity from 77 power plants;[132] the largest group of geothermal power plants in the world is located at The Geysers, a geothermal field in California.[133] The Philippines follows the US as the second highest producer of geothermal power in the world, with 1,904 MW of capacity online; geothermal power makes up approximately 18% of the country's electricity generation.[132]
Infinitemall stands behind their products and is willing to bend over backwards to help the customer. I live in rural Alaska, power here is very expensive and is generated mainly by diesel generators. My family and I are constructing a grid-tied alternative energy home. Outback Inverters and charge controllers are at the heart of the system, with a total of 8KW in solar panels and 5kw in wind generators. I have also constructed a D/C generator using an old 4 wheeler motor and 2 MWS Freedom II Generals that produces an easy 3.5kw at low engine rpms. The system totals close to 20kw in all. I purchased this wind mill to replace an older wind mill that I had built a few years ago using Windy Nations PMG. When I received the wind generator, I was disappointed to find that the center hole for the shaft had not been machined. Infintemall was very helpful, they got a new turbine out to me right away, and even paid for the defective unit to be returned. All said and done, they are a great company to deal with and I would highly recommend their turbine. It is very quiet, and quite powerful.

Energy engineering Oil refinery Fossil-fuel power station Cogeneration Integrated gasification combined cycle Electric power Nuclear power Nuclear power plant Radioisotope thermoelectric generator Solar power Photovoltaic system Concentrated solar power Solar thermal energy Solar power tower Solar furnace Wind power Wind farm High-altitude wind power Geothermal power Hydropower Hydroelectricity Wave farm Tidal power Biomass
Above this rated speed, the wind loads on the rotor blades will be approaching the maximum strength of the electrical machine, and the generator will be producing its maximum or rated power output as the rated wind speed window will have been reached. If the wind speed continues to increase, the wind turbine generator would stop at its cut-out point to prevent mechanical and electrical damage, resulting in zero electrical generation. The application of a brake to stop the generator for damaging itself can be either a mechanical governor or electrical speed sensor.

The conversion of the rotational mechanical power generated by the rotor blades (known as the prime mover) into useful electrical power for use in domestic power and lighting applications or to charge batteries can be accomplished by any one of the following major types of rotational electrical machines commonly used in a wind power generating systems:
When a turbine is mounted on a rooftop the building generally redirects wind over the roof and this can double the wind speed at the turbine. If the height of a rooftop mounted turbine tower is approximately 50% of the building height it is near the optimum for maximum wind energy and minimum wind turbulence. While wind speeds within the built environment are generally much lower than at exposed rural sites,[29][30] noise may be a concern and an existing structure may not adequately resist the additional stress.

Max daily output is at 1.4KW. It also works when there is only the wind power, getting single power. Closed maintenance-free ball bearings ensure not only lightness, high efficiency and low wear. The series of wind turbine with high-quality aluminum alloy and stainless steel parts, the machine is not only light weight, small size, shape is also better than similar products.
Green power is a subset of renewable energy and represents those renewable energy resources and technologies that provide the highest environmental benefit. The U.S. Environmental Protection Agency defines green power as electricity produced from solar, wind, geothermal, biogas, biomass and low-impact small hydroelectric sources. Customers often buy green power for avoided environmental impacts and its greenhouse gas reduction benefits.[9]
Since the 1970s, Brazil has had an ethanol fuel program which has allowed the country to become the world's second largest producer of ethanol (after the United States) and the world's largest exporter.[125] Brazil's ethanol fuel program uses modern equipment and cheap sugarcane as feedstock, and the residual cane-waste (bagasse) is used to produce heat and power.[126] There are no longer light vehicles in Brazil running on pure gasoline. By the end of 2008 there were 35,000 filling stations throughout Brazil with at least one ethanol pump.[127] Unfortunately, Operation Car Wash has seriously eroded public trust in oil companies and has implicated several high ranking Brazilian officials.
Artificial photosynthesis uses techniques including nanotechnology to store solar electromagnetic energy in chemical bonds by splitting water to produce hydrogen and then using carbon dioxide to make methanol.[182] Researchers in this field are striving to design molecular mimics of photosynthesis that utilize a wider region of the solar spectrum, employ catalytic systems made from abundant, inexpensive materials that are robust, readily repaired, non-toxic, stable in a variety of environmental conditions and perform more efficiently allowing a greater proportion of photon energy to end up in the storage compounds, i.e., carbohydrates (rather than building and sustaining living cells).[183] However, prominent research faces hurdles, Sun Catalytix a MIT spin-off stopped scaling up their prototype fuel-cell in 2012, because it offers few savings over other ways to make hydrogen from sunlight.[184]
12 Month Financing: For a limited time, purchase $599 or more using the Amazon.com Store Card and pay no interest for 12 months on your entire order if paid in full in 12 months. Interest will be charged to your account from the purchase date if the promotional balance is not paid in full within 12 months. Minimum monthly payments required. Subject to credit approval. Apply now.
The energy in the wind goes up with the cube of the wind speed. Double the wind speed and you have 2 * 2 * 2 = 8 times the energy! Sit back and let the full weight of that sink in for a moment: It means that even a small difference in annual average wind speed will make a BIG difference in how much your wind turbine will produce: Putting that turbine in a place that has just 10% more wind will net you 1.1 * 1.1 * 1.1 = 1.33 = a full 33% more energy!

Green Energy Corp’s™ Microgrid as a Service (MaaS) package is a cloud based, subscription service enabling third party developers to utilize GreenBus® and Green Energy Corp expertise in financing, building and deploying microgrids. Included in the MaaS package is the microgrid toolset comprised of software, design and engineering packages, equipment recommendations, construction methods, operations and maintenance support, and financial instruments all delivered from a hosted environment.
The tables above are for HAWTs, the regular horizontal “wind mill” type we are all familiar with. For VAWTs the tables can be used as well, but you have to convert their dimensions. Calculate the frontal area (swept area) of the VAWT by multiplying height and width, or for a curved egg-beater approximate the area. Now convert the surface area to a diameter, as if it were a circle: Diameter = √(4 • Area / Pi). That will give you a diameter for the table. Look up the energy production for that diameter and your average annual wind speed and do the following:
In the case of a “wind turbine generator”, the wind pushes directly against the blades of the turbine, which converts the linear motion of the wind into the rotary motion necessary to spin the generators rotor and the harder the wind pushes, the more electrical energy can be generated. Then it is important to have a good wind turbine blade design to extract as much energy out of the wind as possible.
Projections vary. The EIA has predicted that almost two thirds of net additions to power capacity will come from renewables by 2020 due to the combined policy benefits of local pollution, decarbonisation and energy diversification. Some studies have set out roadmaps to power 100% of the world’s energy with wind, hydroelectric and solar by the year 2030.
Within emerging economies, Brazil comes second to China in terms of clean energy investments. Supported by strong energy policies, Brazil has one of the world’s highest biomass and small-hydro power capacities and is poised for significant growth in wind energy investment. The cumulative investment potential in Brazil from 2010 to 2020 is projected as $67 billion.[155]

Heat pumps and Thermal energy storage are classes of technologies that can enable the utilization of renewable energy sources that would otherwise be inaccessible due to a temperature that is too low for utilization or a time lag between when the energy is available and when it is needed. While enhancing the temperature of available renewable thermal energy, heat pumps have the additional property of leveraging electrical power (or in some cases mechanical or thermal power) by using it to extract additional energy from a low quality source (such as seawater, lake water, the ground, the air, or waste heat from a process).


A photovoltaic system converts light into electrical direct current (DC) by taking advantage of the photoelectric effect.[51] Solar PV has turned into a multi-billion, fast-growing industry, continues to improve its cost-effectiveness, and has the most potential of any renewable technologies together with CSP.[52][53] Concentrated solar power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Commercial concentrated solar power plants were first developed in the 1980s. CSP-Stirling has by far the highest efficiency among all solar energy technologies.
Green energy, however, utilizes energy sources that are readily available all over the world, including in rural and remote areas that don't otherwise have access to electricity. Advances in renewable energy technologies have lowered the cost of solar panels, wind turbines and other sources of green energy, placing the ability to produce electricity in the hands of the people rather than those of oil, gas, coal and utility companies.
^ Jump up to: a b Werner, Jürgen H. (2 November 2011). "Toxic Substances In Photovoltaic Modules" (PDF). postfreemarket.net. Institute of Photovoltaics, University of Stuttgart, Germany - The 21st International Photovoltaic Science and Engineering Conference 2011 Fukuoka, Japan. p. 2. Archived from the original (PDF) on 23 September 2014. Retrieved 23 September 2014.

A heat pump is a device that provides heat energy from a source of heat to a destination called a "heat sink". Heat pumps are designed to move thermal energy opposite to the direction of spontaneous heat flow by absorbing heat from a cold space and releasing it to a warmer one. A solar-assisted heat pump represents the integration of a heat pump and thermal solar panels in a single integrated system. Typically these two technologies are used separately (or only placing them in parallel) to produce hot water.[180] In this system the solar thermal panel performs the function of the low temperature heat source and the heat produced is used to feed the heat pump's evaporator.[181] The goal of this system is to get high COP and then produce energy in a more efficient and less expensive way.


I mounted this turbine in my back yard on the recommended schedule 40 galvanized pipe at about 20' high. My location does not get consistent wind from one direction which is the only way this turbine will spin. Even in gusty conditions of 15-20 mph the turbine rarely spins more than a few revolutions and has not produced any measurable power after a month. If you don't have a steady wind from one direction this turbine will not produce any power at all. You would be better off with a vertical turbine or one with larger blade surface area. The specs say 8 mph start up, that means a consistent 8 mph wind from a single direction. For the money you would be better off with a single 80 watt solar panel.
The life-cycle greenhouse-gas emissions of solar power are in the range of 22 to 46 gram (g) per kilowatt-hour (kWh) depending on if solar thermal or solar PV is being analyzed, respectively. With this potentially being decreased to 15 g/kWh in the future.[121] For comparison (of weighted averages), a combined cycle gas-fired power plant emits some 400–599 g/kWh,[122] an oil-fired power plant 893 g/kWh,[122] a coal-fired power plant 915–994 g/kWh[123] or with carbon capture and storage some 200 g/kWh, and a geothermal high-temp. power plant 91–122 g/kWh.[122] The life cycle emission intensity of hydro, wind and nuclear power are lower than solar's as of 2011 as published by the IPCC, and discussed in the article Life-cycle greenhouse-gas emissions of energy sources. Similar to all energy sources were their total life cycle emissions primarily lay in the construction and transportation phase, the switch to low carbon power in the manufacturing and transportation of solar devices would further reduce carbon emissions. BP Solar owns two factories built by Solarex (one in Maryland, the other in Virginia) in which all of the energy used to manufacture solar panels is produced by solar panels. A 1-kilowatt system eliminates the burning of approximately 170 pounds of coal, 300 pounds of carbon dioxide from being released into the atmosphere, and saves up to 105 gallons of water consumption monthly.[124]
Thirty years ago Bergey pioneered the radically-simple “Bergey design” that has proven to provide the best reliability, performance, service life, and value of all of the hundreds of competitive products that have come and gone in that time. With only three moving parts and no scheduled maintenance necessary, the Bergey 10 kW has compiled a service record that no other wind turbine can match. We back it up with the longest warranty in the industry.
The Stirling solar dish combines a parabolic concentrating dish with a Stirling engine which normally drives an electric generator. The advantages of Stirling solar over photovoltaic cells are higher efficiency of converting sunlight into electricity and longer lifetime. Parabolic dish systems give the highest efficiency among CSP technologies.[18] The 50 kW Big Dish in Canberra, Australia is an example of this technology.[14]
×