Jump up ^ Faunce, T. A.; Lubitz, W.; Rutherford, A. W. (Bill); MacFarlane, D.; Moore, G. F.; Yang, P.; Nocera, D. G; Moore, Tom A; Gregory, Duncan H; Fukuzumi, Shunichi; Yoon, Kyung B.; Armstrong, F. A.; Wasielewski, M. R.; Styring, S. (2013), "Energy and environment policy case for a global project on artificial photosynthesis", Energy & Environmental Science, 6 (3): 695–698, doi:10.1039/C3EE00063J, archived from the original on 16 August 2013
A subtype of Darrieus turbine with straight, as opposed to curved, blades. The cycloturbine variety has variable pitch to reduce the torque pulsation and is self-starting.[33] The advantages of variable pitch are: high starting torque; a wide, relatively flat torque curve; a higher coefficient of performance; more efficient operation in turbulent winds; and a lower blade speed ratio which lowers blade bending stresses. Straight, V, or curved blades may be used.[34]
“New Wind May Be Cheaper than Old, Reliable Coal” • Wind farms have cost less to build and operate than coal-fired power plants for some time. The trend of lower costs for renewables has crossed a threshold: it is sometimes cheaper to build a brand new wind facility than keep an old coal plant burning, according to Lazard Ltd. [Casper Star-Tribune Online]
According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment. Cedric Philibert, senior analyst in the renewable energy division at the IEA said: "Photovoltaic and solar-thermal plants may meet most of the world's demand for electricity by 2060 – and half of all energy needs – with wind, hydropower and biomass plants supplying much of the remaining generation". "Photovoltaic and concentrated solar power together can become the major source of electricity", Philibert said.[25]
Single small turbines below 100 kilowatts are used for homes, telecommunications dishes, or water pumping. Small turbines are sometimes used in connection with diesel generators, batteries, and photovoltaic systems. These systems are called hybrid wind systems and are typically used in remote, off-grid locations where a connection to the utility grid is not available.
Wind turbines need wind. Not just any wind, but the nicely flowing, smooth, laminar kind. That cannot be found at 30 feet height. It can usually not be found at 60 feet. Sometimes you find it at 80 feet. More often than not it takes 100 feet of tower to get there. Those towers cost as much or more, installed, as the turbine itself. How much tower you need for a wind turbine to live up to its potential depends on your particular site; on the trees and structures around it etc. Close to the ground the wind is turbulent, and makes a poor fuel for a small wind turbine.
The British Energy Savings Trust report titled “Location, location, location”: This requires some reading-between-the-lines as the Trust is rather closely aligned with the small wind industry. They looked at 57 turbines for a year, a number of them building mounted, others tower mounted, and concluded that building mounted turbines did very poorly.
How accurate are these numbers? This is the energy production a good horizontal-axis wind turbine can reach, if installed at the perfect site and height. These are the upper limit though, if your turbine produces anywhere near the number predicted by this table you should be doing your happy-dance! Most small wind turbine installations underperform significantly, in fact, the average seems to be about half of the predicted energy production (and many do not even reach that). There can be many reasons for the performance shortfall; poor site selection,  with more turbulent air than expected often has much to do with it. The reports in the ‘real world’ section following below illustrate this point. Many small wind turbines do not reach 30% overall efficiency, some are close to 0% (this is no joke!), so these numbers have only one direction to go. For off-grid battery charging wind turbines you should deduct 20 – 30% of the predicted numbers, due to the lower efficiency of a turbine tied to batteries, and the losses involved in charging batteries.
Our latest innovation in the Industrial Internet era, The Digital Wind Farm, is making our turbines smarter and more connected than ever before. A dynamic, connected and adaptable wind energy ecosystem, the Digital Wind Farm pairs our newest turbines with a digital infrastructure, allowing customers to connect, monitor, predict and optimize unit and site performance.
Most installers overrate the available wind resource. The majority of small wind turbine installations underperforms their predictions, often by a wide margin. Since wind speed is the most important parameter for turbine energy production, getting that wrong has large consequences (the power in the wind goes with the cube of the wind speed, so double the wind speed and the power in it is 2 * 2 * 2 = 8x as much). You have to be realistic about your annual average wind speed.

As of 2012, the Alta Wind Energy Center (California, 1,020 MW) is the world's largest wind farm.[107] The London Array (630 MW) is the largest offshore wind farm in the world. The United Kingdom is the world's leading generator of offshore wind power, followed by Denmark.[108] There are several large offshore wind farms operational and under construction and these include Anholt (400 MW), BARD (400 MW), Clyde (548 MW), Fântânele-Cogealac (600 MW), Greater Gabbard (500 MW), Lincs (270 MW), London Array (630 MW), Lower Snake River (343 MW), Macarthur (420 MW), Shepherds Flat (845 MW), and the Sheringham Shoal (317 MW).
Wind-to-rotor efficiency (including rotor blade friction and drag) are among the factors impacting the final price of wind power.[16] Further inefficiencies, such as gearbox losses, generator and converter losses, reduce the power delivered by a wind turbine. To protect components from undue wear, extracted power is held constant above the rated operating speed as theoretical power increases at the cube of wind speed, further reducing theoretical efficiency. In 2001, commercial utility-connected turbines deliver 75% to 80% of the Betz limit of power extractable from the wind, at rated operating speed.[17][18][needs update]
Jump up ^ Schröder, K.-P.; Smith, R.C. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x. See also Palmer, J. (2008). "Hope dims that Earth will survive Sun's death". New Scientist. Retrieved 24 March 2008.
Biomass briquettes are increasingly being used in the developing world as an alternative to charcoal. The technique involves the conversion of almost any plant matter into compressed briquettes that typically have about 70% the calorific value of charcoal. There are relatively few examples of large-scale briquette production. One exception is in North Kivu, in eastern Democratic Republic of Congo, where forest clearance for charcoal production is considered to be the biggest threat to mountain gorilla habitat. The staff of Virunga National Park have successfully trained and equipped over 3500 people to produce biomass briquettes, thereby replacing charcoal produced illegally inside the national park, and creating significant employment for people living in extreme poverty in conflict-affected areas.[18]
Green power is a subset of renewable energy and represents those renewable energy resources and technologies that provide the highest environmental benefit. The U.S. Environmental Protection Agency defines green power as electricity produced from solar, wind, geothermal, biogas, biomass and low-impact small hydroelectric sources. Customers often buy green power for avoided environmental impacts and its greenhouse gas reduction benefits.[9]
Green marketing is the sale of green power in competitive markets, where consumers have the option to choose from a variety of suppliers and service offerings, much like they can choose between long-distance telephone carriers. The key difference between green marketing and green pricing is that with green marketing, you are actually switching electricity providers. 
In 2007, the world's first turbine to create commercial amounts of energy using tidal power was installed in the narrows of Strangford Lough in Ireland. The 1.2 MW underwater tidal electricity generator takes advantage of the fast tidal flow in the lough which can be up to 4m/s. Although the generator is powerful enough to power up to a thousand homes, the turbine has a minimal environmental impact, as it is almost entirely submerged, and the rotors turn slowly enough that they pose no danger to wildlife.[48][49]
Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns and speeds vary greatly across the United States and are modified by bodies of water, vegetation, and differences in terrain. Humans use this wind flow, or motion energy, for many purposes: sailing, flying a kite, and even generating electricity.

Jump up ^ Noth, André (July 2008). "History of Solar Flight" (PDF). Autonomous Systems Lab. Zürich: Swiss Federal Institute of Technology. p. 3. Archived from the original (PDF) on 1 February 2012. Retrieved 8 July 2010. Günter Rochelt was the designer and builder of Solair I, a 16 m wingspan solar airplane ... 21st of August 1983 he flew in Solair I, mostly on solar energy and also thermals, during 5 hours 41 minutes.


The windwheel of Hero of Alexandria (10 AD – 70 AD) marks one of the first recorded instances of wind powering a machine in history.[2][3] However, the first known practical wind power plants were built in Sistan, an Eastern province of Persia (now Iran), from the 7th century. These "Panemone" were vertical axle windmills, which had long vertical drive shafts with rectangular blades.[4] Made of six to twelve sails covered in reed matting or cloth material, these windmills were used to grind grain or draw up water, and were used in the gristmilling and sugarcane industries.[5]
With advanced technology being developed, cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the United States and in Brazil. The energy costs for producing bio-ethanol are almost equal to, the energy yields from bio-ethanol. However, according to the European Environment Agency, biofuels do not address global warming concerns.[75] Biodiesel is made from vegetable oils, animal fats or recycled greases. It can be used as a fuel for vehicles in its pure form, or more commonly as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe. Biofuels provided 2.7% of the world's transport fuel in 2010.[76]
Over $1 billion of federal money has been spent on the research and development of hydrogen and a medium for energy storage in the United States.[150] Both the National Renewable Energy Laboratory[151] and Sandia National Laboratories[152] have departments dedicated to hydrogen research. Hydrogen is useful for energy storage, and for use in airplanes and ships, but is not practical for automobile use, as it is not very efficient, compared to using a battery — for the same cost a person can travel three times as far using a battery electric vehicle.[153]

The trouble with rated power is that it does not tell you anything about energy production. Your utility company charges you for the energy you consume, not power. Likewise, for a small wind  turbine you should be interested in the energy it will produce, for your particular site, with your particular annual average wind speed. Rated power of the turbine does not do that. To find out about energy production take a look at the tables presented earlier.
He was able to begin installation sooner than promised. The finished product looks great. The exterior industrial grade electrical work they did looks stylish. The workers kept a clean job site and fully cleaned up, leaving my place neater than before they began. The workers were knowledgeable and helpful. Other than wishing that it was free, I don't know what they could have done better. I give them my highest recommendation because of a job superbly done.... read more
Solar power - The most prevalent type of renewable energy, solar power is typically produced using photovoltaic cells, which capture sunlight and turn it into electricity. Solar energy is also used to heat buildings and water, provide natural lighting and cook food. Solar technologies have become inexpensive enough to power everything from small hand-held gadgets to entire neighborhoods.
A 2014-published life-cycle analysis of land use for various sources of electricity concluded that the large-scale implementation of solar and wind potentially reduces pollution-related environmental impacts. The study found that the land-use footprint, given in square meter-years per megawatt-hour (m2a/MWh), was lowest for wind, natural gas and rooftop PV, with 0.26, 0.49 and 0.59, respectively, and followed by utility-scale solar PV with 7.9. For CSP, the footprint was 9 and 14, using parabolic troughs and solar towers, respectively. The largest footprint had coal-fired power plants with 18 m2a/MWh.[146]

Renewable energy power plants do provide a steady flow of energy. For example, hydropower plants, ocean thermal plants, osmotic power plants all provide power at a regulated pace, and are thus available power sources at any given moment (even at night, windstill moments etc.). At present however, the number of steady-flow renewable energy plants alone is still too small to meet energy demands at the times of the day when the irregular producing renewable energy plants cannot produce power.

Based on REN21's 2017 report, renewables contributed 19.3% to humans' global energy consumption and 24.5% to their generation of electricity in 2015 and 2016, respectively. This energy consumption is divided as 8.9% coming from traditional biomass, 4.2% as heat energy (modern biomass, geothermal and solar heat), 3.9% hydro electricity and 2.2% is electricity from wind, solar, geothermal, and biomass. Worldwide investments in renewable technologies amounted to more than US$286 billion in 2015, with countries such as China and the United States heavily investing in wind, hydro, solar and biofuels.[5] Globally, there are an estimated 7.7 million jobs associated with the renewable energy industries, with solar photovoltaics being the largest renewable employer.[6] As of 2015 worldwide, more than half of all new electricity capacity installed was renewable.[7]
Renewable energy is energy that is collected from renewable resources, which are naturally replenished on a human timescale, such as sunlight, wind, rain, tides, waves, and geothermal heat.[3] Renewable energy often provides energy in four important areas: electricity generation, air and water heating/cooling, transportation, and rural (off-grid) energy services.[4]
Wind-to-rotor efficiency (including rotor blade friction and drag) are among the factors impacting the final price of wind power.[16] Further inefficiencies, such as gearbox losses, generator and converter losses, reduce the power delivered by a wind turbine. To protect components from undue wear, extracted power is held constant above the rated operating speed as theoretical power increases at the cube of wind speed, further reducing theoretical efficiency. In 2001, commercial utility-connected turbines deliver 75% to 80% of the Betz limit of power extractable from the wind, at rated operating speed.[17][18][needs update]
Green Energy Corp’s™ Microgrid as a Service (MaaS) package is a cloud based, subscription service enabling third party developers to utilize GreenBus® and Green Energy Corp expertise in financing, building and deploying microgrids. Included in the MaaS package is the microgrid toolset comprised of software, design and engineering packages, equipment recommendations, construction methods, operations and maintenance support, and financial instruments all delivered from a hosted environment.
In an electricity system without grid energy storage, generation from stored fuels (coal, biomass, natural gas, nuclear) must be go up and down in reaction to the rise and fall of solar electricity (see load following power plant). While hydroelectric and natural gas plants can quickly follow solar being intermittent due to the weather, coal, biomass and nuclear plants usually take considerable time to respond to load and can only be scheduled to follow the predictable variation. Depending on local circumstances, beyond about 20–40% of total generation, grid-connected intermittent sources like solar tend to require investment in some combination of grid interconnections, energy storage or demand side management. Integrating large amounts of solar power with existing generation equipment has caused issues in some cases. For example, in Germany, California and Hawaii, electricity prices have been known to go negative when solar is generating a lot of power, displacing existing baseload generation contracts.[107][108]

We've had our system running for about 6 months now, whole process took a little over 2 months, other than submitting a form to our HOA and reviewing/signing some docs, Brio took care of the whole thing. The system works great, one month after it was running our power bill with Duke went to $0! Even in the summer when it's usually really high, honestly we were kinda skeptical but it's worked as promised. We're in NC and mainly worked with Brendan, he explained everything clearly and has been very responsive whenever we had questions.... read more
In the next tutorial about Wind Turbine Generators we will look at DC machines and how we can use a DC Generator to produce electricity from the power of the wind. To learn more about “Wind Turbine Generators”, or obtain more wind energy information about the various wind turbine generating systems available, or to explore the advantages and disadvantages of wind energy, Click Here to get your copy of one of the top “Wind Turbine Guides” today direct from Amazon.
Another situation where a small wind turbine can make good sense is in case your province, state, or country has rebates or other incentives that make it cheap to install one (just keep ongoing maintenance and repair cost in mind as well). While we would like to advocate responsible spending of government money, the small wind industry needs many more customers to mature. It takes time and installation numbers for manufacturers to work out the bugs, make better turbines, and make them cheaper.
Wind power first appeared in Europe during the Middle Ages. The first historical records of their use in England date to the 11th or 12th centuries and there are reports of German crusaders taking their windmill-making skills to Syria around 1190.[6] By the 14th century, Dutch windmills were in use to drain areas of the Rhine delta. Advanced wind turbines were described by Croatian inventor Fausto Veranzio. In his book Machinae Novae (1595) he described vertical axis wind turbines with curved or V-shaped blades.
Alternatively, SRECs allow for a market mechanism to set the price of the solar generated electricity subsity. In this mechanism, a renewable energy production or consumption target is set, and the utility (more technically the Load Serving Entity) is obliged to purchase renewable energy or face a fine (Alternative Compliance Payment or ACP). The producer is credited for an SREC for every 1,000 kWh of electricity produced. If the utility buys this SREC and retires it, they avoid paying the ACP. In principle this system delivers the cheapest renewable energy, since the all solar facilities are eligible and can be installed in the most economic locations. Uncertainties about the future value of SRECs have led to long-term SREC contract markets to give clarity to their prices and allow solar developers to pre-sell and hedge their credits.
×