Advertising Architecture Art Business City College programs Community Design Ecovillage Education for Sustainable Development Fashion Gardening Geopark Green marketing Industries Landscape architecture Living Low-impact development Sustainable market Organizations Packaging Practices Procurement Tourism Transport Urban drainage systems Urban infrastructure Urbanism
The terms wind energy or wind power describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity.
Small-scale turbines are expensive (one manufacturer says a typical system costs $40,000 to $60,000 to install), though some of that outlay can be offset by federal and local tax credits. Experts recommend that you buy one certified by the Small Wind Certification Council. Turbine manufacturers include Bergey Wind Power, Britwind and Xzeres Wind; look on their websites for local dealers.
Maybe you reside on a boat, vacation in a remote cabin, or live off-grid like me. Or perhaps you’re just interested in lowering your energy bill. Either way, with a handful of inexpensive and easy-to-source materials, you can build a homemade wind generator, making electricity yours for the taking for as long as the wind is blowing. You’ll be able to light up that storeroom, power your barn, or use a generator to keep all your vehicle batteries charged.
Additions of small amount (0.5 weight %) of nanoreinforcement (carbon nanotubes or nanoclay in the polymer matrix of composites, fiber sizing or interlaminar layers can allow to increase the fatigue resistance, shear or compressive strength as well as fracture toughness of the composites by 30–80%. Research has also shown that the incorporation of small amount of carbon nanotubes/CNT can increase the lifetime up to 1500%.
The stiffness of composites is determined by the stiffness of fibers and their volume content. Typically, E-glass fibers are used as main reinforcement in the composites. Typically, the glass/epoxy composites for wind blades contain up to 75 weight % glass. This increases the stiffness, tensile and compression strength. A promising source of the composite materials in the future is glass fibers with modified compositions like S-glass, R-glass etc. Some other special glasses developed by Owens Corning are ECRGLAS, Advantex and most recently WindStrand glass fibers. [49]

As of 2011, small solar PV systems provide electricity to a few million households, and micro-hydro configured into mini-grids serves many more. Over 44 million households use biogas made in household-scale digesters for lighting and/or cooking, and more than 166 million households rely on a new generation of more-efficient biomass cookstoves.[26] United Nations' Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity.[14] At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. National renewable energy markets are projected to continue to grow strongly in the coming decade and beyond, and some 120 countries have various policy targets for longer-term shares of renewable energy, including a 20% target of all electricity generated for the European Union by 2020. Some countries have much higher long-term policy targets of up to 100% renewables. Outside Europe, a diverse group of 20 or more other countries target renewable energy shares in the 2020–2030 time frame that range from 10% to 50%.[11]
On most horizontal wind turbine farms, a spacing of about 6–10 times the rotor diameter is often upheld. However, for large wind farms distances of about 15 rotor diameters should be more economical, taking into account typical wind turbine and land costs. This conclusion has been reached by research[62] conducted by Charles Meneveau of the Johns Hopkins University,[63] and Johan Meyers of Leuven University in Belgium, based on computer simulations[64] that take into account the detailed interactions among wind turbines (wakes) as well as with the entire turbulent atmospheric boundary layer.

For a decade now, we’ve stopped this project in its tracks. Thousands of us have shown up at public hearings, tens of thousand of us have marched in the streets, hundreds of thousands of us have taken action. We’ve made phone calls, we’ve rallied at the white house, we’ve organized, worked in solidarity with the tribes and now, a talented group of pro-environment lawyers have held the Trump administration accountable in court. 
One- to 10-kW turbines can be used in applications such as pumping water. Wind energy has been used for centuries to pump water and grind grain. Although mechanical windmills still provide a sensible, low-cost option for pumping water in low-wind areas, farmers and ranchers are finding that wind-electric pumping is more versatile and they can pump twice the volume for the same initial investment. In addition, mechanical windmills must be placed directly above the well, which may not take advantage of available wind resources. Wind-electric pumping systems can be placed where the wind resource is the best and connected to the pump motor with an electric cable. However, in areas with a low wind resource, mechanical windmills can provide more efficient water pumping.
A more reliable grid: Even if we're not ready to completely transition to renewable energy sources of power, supplementing the grid with green electricity helps increase grid reliability. You can also produce your own green electricity by installing solar panels or wind turbines at home. If the grid goes down for some reason, you may be able to keep your power on using your on-site renewable power generation system.

Grid parity, the point at which the cost of photovoltaic electricity is equal to or cheaper than the price of grid power, is more easily achieved in areas with abundant sun and high costs for electricity such as in California and Japan.[80] In 2008, The levelized cost of electricity for solar PV was $0.25/kWh or less in most of the OECD countries. By late 2011, the fully loaded cost was predicted to fall below $0.15/kWh for most of the OECD and to reach $0.10/kWh in sunnier regions. These cost levels are driving three emerging trends: vertical integration of the supply chain, origination of power purchase agreements (PPAs) by solar power companies, and unexpected risk for traditional power generation companies, grid operators and wind turbine manufacturers.[81][dead link]

Geothermal energy - Just under the earth's crust are massive amounts of thermal energy, which originates from both the original formation of the planet and the radioactive decay of minerals. Geothermal energy in the form of hot springs has been used by humans for millennia for bathing, and now it's being used to generate electricity. In North America alone, there's enough energy stored underground to produce 10 times as much electricity as coal currently does.
While many renewable energy projects are large-scale, renewable technologies are also suited to rural and remote areas and developing countries, where energy is often crucial in human development.[13] Former United Nations Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity.[14] As most of renewables provide electricity, renewable energy deployment is often applied in conjunction with further electrification, which has several benefits: Electricity can be converted to heat (where necessary generating higher temperatures than fossil fuels), can be converted into mechanical energy with high efficiency and is clean at the point of consumption.[15][16] In addition to that electrification with renewable energy is much more efficient and therefore leads to a significant reduction in primary energy requirements, because most renewables don't have a steam cycle with high losses (fossil power plants usually have losses of 40 to 65%).[17]
The theory of peak oil was published in 1956.[39] In the 1970s environmentalists promoted the development of renewable energy both as a replacement for the eventual depletion of oil, as well as for an escape from dependence on oil, and the first electricity generating wind turbines appeared. Solar had long been used for heating and cooling, but solar panels were too costly to build solar farms until 1980.[40]
Adam Schultz, a senior policy analyst for the Oregon Department of Energy, says he’s more encouraged than ever about the prospects for renewables. Because the Pacific Northwest features large-scale hydropower plants built as part of the New Deal, energy already tends to be less expensive there than the U.S. average. But solar and wind power have “gotten cheaper over the last couple years to the point that I can’t even tell you what the costs are because costs have been dropping so rapidly,” Schultz says. “We have enough sunshine,” he says (presumably referring to the eastern part of the state), “so it’s just a matter of time.”
Renewable energy technology has sometimes been seen as a costly luxury item by critics, and affordable only in the affluent developed world. This erroneous view has persisted for many years, but 2015 was the first year when investment in non-hydro renewables, was higher in developing countries, with $156 billion invested, mainly in China, India, and Brazil.[134]
^ Jump up to: a b c d Alsema, E.A.; Wild – Scholten, M.J. de; Fthenakis, V.M. Environmental impacts of PV electricity generation – a critical comparison of energy supply options Archived 6 March 2012 at the Wayback Machine. ECN, September 2006; 7p. Presented at the 21st European Photovoltaic Solar Energy Conference and Exhibition, Dresden, Germany, 4–8 September 2006.
The British Energy Savings Trust report titled “Location, location, location”: This requires some reading-between-the-lines as the Trust is rather closely aligned with the small wind industry. They looked at 57 turbines for a year, a number of them building mounted, others tower mounted, and concluded that building mounted turbines did very poorly.
A hybrid system combines (C)PV and CSP with one another or with other forms of generation such as diesel, wind and biogas. The combined form of generation may enable the system to modulate power output as a function of demand or at least reduce the fluctuating nature of solar power and the consumption of non renewable fuel. Hybrid systems are most often found on islands.
×