Our latest innovation in the Industrial Internet era, The Digital Wind Farm, is making our turbines smarter and more connected than ever before. A dynamic, connected and adaptable wind energy ecosystem, the Digital Wind Farm pairs our newest turbines with a digital infrastructure, allowing customers to connect, monitor, predict and optimize unit and site performance.
Climate change and global warming concerns, coupled with high oil prices, peak oil, and increasing government support, are driving increasing renewable energy legislation, incentives and commercialization.[10] New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors.[24] According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment.[25]
Free electricity isnt all you get from a new home wind Generator, as soon as your system is up, you have improved your home value by atleast an equal amount of the investment. Your green energy home is more likely to sell compared to others with no home generation or emergency power system. Think about it. Look at homes for sale.. Can any of them generate their own free electricity, how many can compete with such a solid green energy capability like your home wind Generator delivers. Its also an attention getter and will bring people to see what its about if you ever need to sell, your home has a dramatic edge and a higher resale value.
Green energy is the term used to describe sources of energy that are considered to be environmentally friendly and non-polluting, such as geothermal, wind, solar, and hydro. Sometimes nuclear power is also considered a green energy source. Green energy sources are often considered "green" because they are perceived to lower carbon emissions and create less pollution.
Wind turbines allow us to harness the power of the wind and turn it into energy. When the wind blows, the turbine's blades spin clockwise, capturing energy. This triggers the main shaft, connected to a gearbox within the nacelle, to spin. The gearbox sends that energy to the generator, converting it to electricity. Electricity then travels down the tower to a transformer, where voltage levels are adjusted to match with the grid.
Then I pick up a Home Power Magazine, or a Backwoods Home, or a Mother Earth News.  I read the letters to the editor and I think, These are my people!  This is my tribe—the tribe of folks striving for independence of thought and lifestyle, who are creative in their choice of building materials, who try to make responsible choices about how their choices affect the environment they live in.
The Stirling solar dish combines a parabolic concentrating dish with a Stirling engine which normally drives an electric generator. The advantages of Stirling solar over photovoltaic cells are higher efficiency of converting sunlight into electricity and longer lifetime. Parabolic dish systems give the highest efficiency among CSP technologies.[18] The 50 kW Big Dish in Canberra, Australia is an example of this technology.[14]
The expansion is thanks largely to innovation on the policy front, which has opened up opportunities in regulated electricity markets. The number of corporate renewable energy deals signed under utility green tariff programs continues to grow, representing around 25 percent of corporate renewables procurement so far this year. At the same time, utilities are incorporating corporate renewables into their long-term planning — and thinking about solutions beyond green tariffs to better meet the needs of existing corporate customers and smaller loads.
The stiffness of composites is determined by the stiffness of fibers and their volume content. Typically, E-glass fibers are used as main reinforcement in the composites. Typically, the glass/epoxy composites for wind blades contain up to 75 weight % glass. This increases the stiffness, tensile and compression strength. A promising source of the composite materials in the future is glass fibers with modified compositions like S-glass, R-glass etc. Some other special glasses developed by Owens Corning are ECRGLAS, Advantex and most recently WindStrand glass fibers. [49]

Projections vary. The EIA has predicted that almost two thirds of net additions to power capacity will come from renewables by 2020 due to the combined policy benefits of local pollution, decarbonisation and energy diversification. Some studies have set out roadmaps to power 100% of the world’s energy with wind, hydroelectric and solar by the year 2030.
United Nations' Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity.[14] In October 2011, he "announced the creation of a high-level group to drum up support for energy access, energy efficiency and greater use of renewable energy. The group is to be co-chaired by Kandeh Yumkella, the chair of UN Energy and director general of the UN Industrial Development Organisation, and Charles Holliday, chairman of Bank of America".[147]
Materials for wind turbine parts other than the rotor blades (including the rotor hub, gearbox, frame, and tower) are largely composed of steel. Modern turbines use a couple of tons of copper for generators, cables, and such.[52] Smaller wind turbines have begun incorporating more aluminum based alloys into these components in an effort to make the turbines lighter and more efficient, and may continue to be used increasingly if fatigue and strength properties can be improved. Prestressed concrete has been increasingly used for the material of the tower, but still requires much reinforcing steel to meet the strength requirement of the turbine. Additionally, step-up gearboxes are being increasingly replaced with variable speed generators, increasing the demand for magnetic materials in wind turbines.[46] In particular, this would require an increased supply of the rare earth metal neodymium.
There is no energy in the wind at those wind speeds, nothing to harvest for the turbine. While it may make you feel good to see your expensive yard toy spin, it is not doing anything meaningful in a breeze like that: To give you some idea, a wind turbine with a diameter of 6 meters (pretty large as small wind turbines go) can realistically produce just 120 Watt at 3.5 m/s wind speed. That same turbine would be rated at 6 kW (or more, see the next section), so energy production at cut-in really is just a drop in the bucket. What is more, due to the way grid-tie inverters work, you are about as likely to be loosing energy around cut-in wind speed to keep the inverter powered, as you are in making any energy, resulting in a net-loss of electricity production.
By clicking above, you authorize Solar Power Authority and up to four Solar Companies to call you and send you pre-recorded messages and text messages at the number you entered above, using an autodialer, with offers about their products or services, even if your phone number is on any national or state “Do Not Call” list. Message and data rates may apply. Your consent here is not based on a condition of purchase.
Artificial photosynthesis uses techniques including nanotechnology to store solar electromagnetic energy in chemical bonds by splitting water to produce hydrogen and then using carbon dioxide to make methanol.[182] Researchers in this field are striving to design molecular mimics of photosynthesis that utilize a wider region of the solar spectrum, employ catalytic systems made from abundant, inexpensive materials that are robust, readily repaired, non-toxic, stable in a variety of environmental conditions and perform more efficiently allowing a greater proportion of photon energy to end up in the storage compounds, i.e., carbohydrates (rather than building and sustaining living cells).[183] However, prominent research faces hurdles, Sun Catalytix a MIT spin-off stopped scaling up their prototype fuel-cell in 2012, because it offers few savings over other ways to make hydrogen from sunlight.[184]
As the cost of solar electricity has fallen, the number of grid-connected solar PV systems has grown into the millions and utility-scale solar power stations with hundreds of megawatts are being built. Solar PV is rapidly becoming an inexpensive, low-carbon technology to harness renewable energy from the Sun. The current largest photovoltaic power station in the world is the 850 MW Longyangxia Dam Solar Park, in Qinghai, China.