Those not satisfied with the third-party grid approach to green energy via the power grid can install their own locally based renewable energy system. Renewable energy electrical systems from solar to wind to even local hydro-power in some cases, are some of the many types of renewable energy systems available locally. Additionally, for those interested in heating and cooling their dwelling via renewable energy, geothermal heat pump systems that tap the constant temperature of the earth, which is around 7 to 15 degrees Celsius a few feet underground and increases dramatically at greater depths, are an option over conventional natural gas and petroleum-fueled heat approaches. Also, in geographic locations where the Earth's Crust is especially thin, or near volcanoes (as is the case in Iceland) there exists the potential to generate even more electricity than would be possible at other sites, thanks to a more significant temperature gradient at these locales.

^ Jump up to: a b c Fridleifsson,, Ingvar B.; Bertani, Ruggero; Huenges, Ernst; Lund, John W.; Ragnarsson, Arni; Rybach, Ladislaus (11 February 2008). O. Hohmeyer and T. Trittin, ed. "The possible role and contribution of geothermal energy to the mitigation of climate change" (PDF). Luebeck, Germany: 59–80. Archived from the original (pdf) on 22 July 2011. Retrieved 6 April 2009.


Materials that are typically used for the rotor blades in wind turbines are composites, as they tend to have a high stiffness, high strength, high fatigue resistance, and low weight.[46] Typical resins used for these composites include polyester and epoxy, while glass and carbon fibers have been used for the reinforcing material.[47] Construction may use manual layup techniques or composite resin injection molding. As the price of glass fibers is only about one tenth the price of carbon fiber, glass fiber is still dominant.
"Eggbeater" turbines, or Darrieus turbines, were named after the French inventor, Georges Darrieus.[31] They have good efficiency, but produce large torque ripple and cyclical stress on the tower, which contributes to poor reliability. They also generally require some external power source, or an additional Savonius rotor to start turning, because the starting torque is very low. The torque ripple is reduced by using three or more blades which results in greater solidity of the rotor. Solidity is measured by blade area divided by the rotor area. Newer Darrieus type turbines are not held up by guy-wires but have an external superstructure connected to the top bearing.[32]

Renewable energy technologies are getting cheaper, through technological change and through the benefits of mass production and market competition. A 2011 IEA report said: "A portfolio of renewable energy technologies is becoming cost-competitive in an increasingly broad range of circumstances, in some cases providing investment opportunities without the need for specific economic support," and added that "cost reductions in critical technologies, such as wind and solar, are set to continue."[99]

The waste we generate ends up in landfills, where it decomposes and produces landfill gas made of approximately 50 percent methane. This gas can be captured and used to fuel electric generators. Since large landfills must burn off this gas to reduce the hazards arising from gas buildup, this method of renewable energy is one of the most successful.
Julia Pyper is a Senior Editor at Greentech Media covering clean energy policy, the solar industry, grid edge technologies and electric mobility. She previously reported for E&E Publishing, and has covered clean energy and climate change issues across the U.S. and abroad, including in Haiti, Israel and the Maldives. Julia holds degrees from McGill and Columbia Universities. Find her on Twitter @JMPyper.
Smart grid refers to a class of technology people are using to bring utility electricity delivery systems into the 21st century, using computer-based remote control and automation.[65] These systems are made possible by two-way communication technology and computer processing that has been used for decades in other industries. They are beginning to be used on electricity networks, from the power plants and wind farms all the way to the consumers of electricity in homes and businesses. They offer many benefits to utilities and consumers—mostly seen in big improvements in energy efficiency on the electricity grid and in the energy users’ homes and offices.[65]
If you do install an anemometer and measure the wind over one or more years, you should compare the annual average wind speed obtained from your anemometer data to the annual average of the nearest airport or meteo-station for that same year. This will tell you if your site is more or less windy than that airport or meteo-station, and by how much. Then compare that year’s data  to the long-term annual average wind speed, and you will know what to expect over the long term, corrected for your particular site. It will not be exact, but it will make your short-term anemometer data much more useful.
Solar contractors face many decisions when it comes to finding the best solar design. One important consideration is determining whether to use module-level power electronics (microinverters or DC optimizers). Once costly specialty products, module-level power electronics have made great strides in the last decade and are rapidly growing in popularity. And there’s good reason for…
List of books about renewable energy List of countries by electricity production from renewable sources List of geothermal power stations Lists of hydroelectric power stations List of largest hydroelectric power stations List of people associated with renewable energy List of renewable energy companies by stock exchange List of renewable energy organizations List of renewable energy topics by country List of U.S. states by electricity production from renewable sources

A typical house usually requires a home wind turbine with a 5 kW generating capacity to meet all its energy requirements. A turbine that offers this much power would have to be around 13 to 18 feet in diameter and positioned in an area where strong winds often pass through. There are also plenty of smaller, cheaper turbines, but these variants produce less power and are less reliable than their more expensive counterparts.


Geothermal power plants can operate 24 hours per day, providing base-load capacity, and the world potential capacity for geothermal power generation is estimated at 85 GW over the next 30 years. However, geothermal power is accessible only in limited areas of the world, including the United States, Central America, East Africa, Iceland, Indonesia, and the Philippines. The costs of geothermal energy have dropped substantially from the systems built in the 1970s.[10] Geothermal heat generation can be competitive in many countries producing geothermal power, or in other regions where the resource is of a lower temperature. Enhanced geothermal system (EGS) technology does not require natural convective hydrothermal resources, so it can be used in areas that were previously unsuitable for geothermal power, if the resource is very large. EGS is currently under research at the U.S. Department of Energy.
A Wind Turbine Generator is what makes your electricity by converting mechanical energy into electrical energy. Lets be clear here, they do not create energy or produce more electrical energy than the amount of mechanical energy being used to spin the rotor blades. The greater the “load”, or electrical demand placed on the generator, the more mechanical force is required to turn the rotor. This is why generators come in different sizes and produce differing amounts of electricity.
Shi Zhengrong has said that, as of 2012, unsubsidised solar power is already competitive with fossil fuels in India, Hawaii, Italy and Spain. He said "We are at a tipping point. No longer are renewable power sources like solar and wind a luxury of the rich. They are now starting to compete in the real world without subsidies". "Solar power will be able to compete without subsidies against conventional power sources in half the world by 2015".[75]
We harness the earth’s most abundant resources – the strength of the wind, the heat of the sun and the force of water – to power the world’s biggest economies and the most remote communities. Combining onshore and offshore wind, hydro and innovative technologies, GE Renewable Energy has installed more than 400+ gigawatts capacity globally to make the world work better and cleaner.
The use of a gearbox allows for better matching of the generator speed to that of the turbine but the disadvantage of using a gearbox is that as a mechanical component it is subjected to wear and tear reducing the efficiency of the system. Direct drive however may be more simple and efficient, but the generators rotor shaft and bearings are subjected to the full weight and rotational force of the rotor blades.
Even if you can’t directly purchase and install a solar system because you rent your home, have inadequate solar resources, or lack financing, you may still benefit from switching to solar electricity, and there numerous business models that make solar easier, cheaper, and more accessible. Options such as community or shared solar programs, solar leases, and power-purchase agreements allow millions of households to take advantage of solar energy. Learn about the various ways you can go solar.

A recent UK Government document states that "projects are generally more likely to succeed if they have broad public support and the consent of local communities. This means giving communities both a say and a stake".[194] In countries such as Germany and Denmark many renewable projects are owned by communities, particularly through cooperative structures, and contribute significantly to overall levels of renewable energy deployment.[195][196]
“California Invests in ‘By Location’ Distributed Energy Resources” • California leads the US with several pilot projects to reward rooftop solar energy generators and other distributed energy resources in specific locations as an alternative to having utilities meet needs by investing in upgrading their electricity generation networks. [CleanTechnica]

The most significant barriers to the widespread implementation of large-scale renewable energy and low carbon energy strategies are primarily political and not technological. According to the 2013 Post Carbon Pathways report, which reviewed many international studies, the key roadblocks are: climate change denial, the fossil fuels lobby, political inaction, unsustainable energy consumption, outdated energy infrastructure, and financial constraints.[155]
Wind turbines need wind. Not just any wind, but the nicely flowing, smooth, laminar kind. That cannot be found at 30 feet height. It can usually not be found at 60 feet. Sometimes you find it at 80 feet. More often than not it takes 100 feet of tower to get there. Those towers cost as much or more, installed, as the turbine itself. How much tower you need for a wind turbine to live up to its potential depends on your particular site; on the trees and structures around it etc. Close to the ground the wind is turbulent, and makes a poor fuel for a small wind turbine.
Large three-bladed horizontal-axis wind turbines (HAWT), with the blades upwind of the tower produce the overwhelming majority of windpower in the world today. These turbines have the main rotor shaft and electrical generator at the top of a tower, and must be pointed into the wind. Small turbines are pointed by a simple wind vane, while large turbines generally use a wind sensor coupled with a yaw system. Most have a gearbox, which turns the slow rotation of the blades into a quicker rotation that is more suitable to drive an electrical generator.[25] Some turbines use a different type of generator suited to slower rotational speed input. These don't need a gearbox, and are called direct-drive, meaning they couple the rotor directly to the generator with no gearbox in between. While permanent magnet direct-drive generators can be more costly due to the rare earth materials required, these gearless turbines are sometimes preferred over gearbox generators because they "eliminate the gear-speed increaser, which is susceptible to significant accumulated fatigue torque loading, related reliability issues, and maintenance costs."[26]
Many residential PV systems are connected to the grid wherever available, especially in developed countries with large markets.[10] In these grid-connected PV systems, use of energy storage is optional. In certain applications such as satellites, lighthouses, or in developing countries, batteries or additional power generators are often added as back-ups. Such stand-alone power systems permit operations at night and at other times of limited sunlight.
×