Kinetic Internal Thermal Potential Gravitational Elastic Electrical potential energy Mechanical Interatomic potential Electrical Magnetic Ionization Radiant Binding Nuclear binding energy Gravitational binding energy Chromodynamic Dark Quintessence Phantom Negative Chemical Rest Sound energy Surface energy Mechanical wave Sound wave Vacuum energy Zero-point energy
Enhanced geothermal systems (EGS) are a new type of geothermal power technologies that do not require natural convective hydrothermal resources. The vast majority of geothermal energy within drilling reach is in dry and non-porous rock.[161] EGS technologies "enhance" and/or create geothermal resources in this "hot dry rock (HDR)" through hydraulic stimulation. EGS and HDR technologies, such as hydrothermal geothermal, are expected to be baseload resources which produce power 24 hours a day like a fossil plant. Distinct from hydrothermal, HDR and EGS may be feasible anywhere in the world, depending on the economic limits of drill depth. Good locations are over deep granite covered by a thick (3–5 km) layer of insulating sediments which slow heat loss.[162] There are HDR and EGS systems currently being developed and tested in France, Australia, Japan, Germany, the U.S. and Switzerland. The largest EGS project in the world is a 25 megawatt demonstration plant currently being developed in the Cooper Basin, Australia. The Cooper Basin has the potential to generate 5,000–10,000 MW.
 ★【Excellence Performance】Wind Turbine, Nylon fiber blades,rated power:600W ★【Scientific Design】Using reinforced fiberglass on wind wheel blades and the aerodynamic lantern shape design, the coefficient of wind energy utilisation is increased, so as increased annual electricity generation capacity. ★【Low Noise】Low start up wind speed, high efficiency, small size, low vibration ★【Premium Material】The shell is made of aluminum alloy die-casting, with double bearing carrier, anti-typhoon capacity is stronger, safe and reliable operation. Easy installation, low maintenance.
Solar panels converts the sun's light in to usable solar energy using N-type and P-type semiconductor material.  When sunlight is absorbed by these materials, the solar energy knocks electrons loose from their atoms, allowing the electrons to flow through the material to produce electricity. This process of converting light (photons) to electricity (voltage) is called the photovoltaic (PV) effect.  Currently solar panels convert most of the visible light spectrum and about half of the ultraviolet and infrared light spectrum to usable solar energy.
When power flows from the generator to your house, electrons get mixed together on the wires. You can't specify which electrons you get, but you can make sure that your money goes to support clean, sustainable  generators, which has the effect of making the whole system "greener". To do this, you will need to look closely at utility marketing claims and materials. To ensure that the claims are truthful, many states now require disclosure labels, just like the nutrition labels on food packages. But don't hesitate to ask for more information directly from potential suppliers, including the percentage of power derived from each fuel source and the level of each of the above emissions compared with the regional average.
^ Jump up to: a b Werner, Jürgen H. (2 November 2011). "Toxic Substances In Photovoltaic Modules" (PDF). postfreemarket.net. Institute of Photovoltaics, University of Stuttgart, Germany - The 21st International Photovoltaic Science and Engineering Conference 2011 Fukuoka, Japan. p. 2. Archived from the original (PDF) on 23 September 2014. Retrieved 23 September 2014.
When power flows from the generator to your house, electrons get mixed together on the wires. You can't specify which electrons you get, but you can make sure that your money goes to support clean, sustainable  generators, which has the effect of making the whole system "greener". To do this, you will need to look closely at utility marketing claims and materials. To ensure that the claims are truthful, many states now require disclosure labels, just like the nutrition labels on food packages. But don't hesitate to ask for more information directly from potential suppliers, including the percentage of power derived from each fuel source and the level of each of the above emissions compared with the regional average.
Since having the Peimar Solar Panels installed and listening to the advice of the owner I have saved a lot of money on my electric bill. Texas Solar Integrated did the work as quickly and efficiently as promised. If the panels look dirty, since I live around cement plants, I just get my high pressure water hose and spray them off. Thank you to this company and the installers. The owner or another contractor in the office is always ready to answer your questions before and after installation.... read more
“Five New State Governors Aim for 100% Renewables” • Five governors-elect in Colorado, Illinois, Nevada, Connecticut, and Maine, states with a combined population of 26 million, put forth campaign goals of 100% renewable electricity. Currently, only California and Hawaii have a deadline to move to 100% zero-carbon electricity. [pv magazine International]
Hydro-electricity and geothermal electricity produced at favourable sites are now the cheapest way to generate electricity. Renewable energy costs continue to drop, and the levelised cost of electricity (LCOE) is declining for wind power, solar photovoltaic (PV), concentrated solar power (CSP) and some biomass technologies.[100] Renewable energy is also the most economic solution for new grid-connected capacity in areas with good resources. As the cost of renewable power falls, the scope of economically viable applications increases. Renewable technologies are now often the most economic solution for new generating capacity. Where "oil-fired generation is the predominant power generation source (e.g. on islands, off-grid and in some countries) a lower-cost renewable solution almost always exists today".[100] A series of studies by the US National Renewable Energy Laboratory modeled the "grid in the Western US under a number of different scenarios where intermittent renewables accounted for 33 percent of the total power." In the models, inefficiencies in cycling the fossil fuel plants to compensate for the variation in solar and wind energy resulted in an additional cost of "between $0.47 and $1.28 to each MegaWatt hour generated"; however, the savings in the cost of the fuels saved "adds up to $7 billion, meaning the added costs are, at most, two percent of the savings."[101]

While renewables have been very successful in their ever-growing contribution to electrical power there are no countries dominated by fossil fuels who have a plan to stop and get that power from renwables. Only Scotland and Ontario have stopped burning coal, largely due to good natural gas supplies. In the area of transportation, fossil fuels are even more entrenched and solutions harder to find.[198] It's unclear if there are failures with policy or renewable energy, but twenty years after the Kyoto Protocol fossil fuels are still our primary energy source and consumption continues to grow.[199]
Wind turbines are generally inexpensive. They will produce electricity at between two and six cents per kilowatt hour, which is one of the lowest-priced renewable energy sources.[72] And as technology needed for wind turbines continues to improve, the prices will decrease as well. In addition, there is no competitive market for wind energy, as it does not cost money to get ahold of wind.[72] The main cost of wind turbines are the installation process. The average cost is between $48,000 and $65,000 to install. However, the energy harvested from the turbine will offset the installation cost, as well as provide virtually free energy for years after.[73]

In 2007, General Electric's Chief Engineer predicted grid parity without subsidies in sunny parts of the United States by around 2015; other companies predicted an earlier date:[85] the cost of solar power will be below grid parity for more than half of residential customers and 10% of commercial customers in the OECD, as long as grid electricity prices do not decrease through 2010.[81]

In 2004, the German government introduced the first large-scale feed-in tariff system, under the German Renewable Energy Act, which resulted in explosive growth of PV installations in Germany. At the outset the FIT was over 3x the retail price or 8x the industrial price. The principle behind the German system is a 20-year flat rate contract. The value of new contracts is programmed to decrease each year, in order to encourage the industry to pass on lower costs to the end users. The programme has been more successful than expected with over 1GW installed in 2006, and political pressure is mounting to decrease the tariff to lessen the future burden on consumers.


A heat pump is a device that provides heat energy from a source of heat to a destination called a "heat sink". Heat pumps are designed to move thermal energy opposite to the direction of spontaneous heat flow by absorbing heat from a cold space and releasing it to a warmer one. A solar-assisted heat pump represents the integration of a heat pump and thermal solar panels in a single integrated system. Typically these two technologies are used separately (or only placing them in parallel) to produce hot water.[180] In this system the solar thermal panel performs the function of the low temperature heat source and the heat produced is used to feed the heat pump's evaporator.[181] The goal of this system is to get high COP and then produce energy in a more efficient and less expensive way.
So does it make a difference what type of electrical generator we can use to produce wind power. The simple answer is both Yes and No, as it all depends upon the type of system and application you want. The low voltage DC output from a generator or older style dynamo can be used to charge batteries while the higher AC sinusoidal output from an alternator can be connected directly to the local grid.
Manufacturers often claim that their vertical axis turbine is better at extracting power from low speed winds. Unfortunately the laws of physics get in the way here: There is very little power in low speed winds. The blade of a vertical or horizontal type turbine is equally good at extracting that power, though with the vertical type the blades move at an angle to the wind where they do not extract energy for part of every rotation, adding drag and making a vertical type turbine just a little less efficient than a similar sized horizontal one. There is no advantage when it comes to low winds.
The expansion is thanks largely to innovation on the policy front, which has opened up opportunities in regulated electricity markets. The number of corporate renewable energy deals signed under utility green tariff programs continues to grow, representing around 25 percent of corporate renewables procurement so far this year. At the same time, utilities are incorporating corporate renewables into their long-term planning — and thinking about solutions beyond green tariffs to better meet the needs of existing corporate customers and smaller loads.
Thirty years ago Bergey pioneered the radically-simple “Bergey design” that has proven to provide the best reliability, performance, service life, and value of all of the hundreds of competitive products that have come and gone in that time. With only three moving parts and no scheduled maintenance necessary, the Bergey 10 kW has compiled a service record that no other wind turbine can match. We back it up with the longest warranty in the industry.
Most small wind turbines do not perform quite as well as their manufacturers want you to believe. That should come as no surprise at this point. What may be surprising is that even the turbines of the more honourable manufacturers that are honest about performance fall short, more often than not. The likely cause is turbulence and improper site selection.
VAWT type turbines have no inherent advantage over HAWT type turbines. There, we have said it! VAWTs do not do any better in turbulent wind than HAWTs. Leaving the Savonius type VAWTs out (the type that looks like an oil drum cut in half – they have very poor efficiency anyway), both horizontal and vertical type turbines rely on an airfoil, a wing, to produce power. Airfoils simply do not work well in turbulent air; the wind needs to hit them at just the right angle and eddies wreak havoc. Couple that with the insistence of vertical axis turbine manufacturers to install their devices on very short towers or rooftops, and you get the picture. It will not work.

Vertical-axis wind turbines (or VAWTs) have the main rotor shaft arranged vertically. One advantage of this arrangement is that the turbine does not need to be pointed into the wind to be effective, which is an advantage on a site where the wind direction is highly variable. It is also an advantage when the turbine is integrated into a building because it is inherently less steerable. Also, the generator and gearbox can be placed near the ground, using a direct drive from the rotor assembly to the ground-based gearbox, improving accessibility for maintenance. However, these designs produce much less energy averaged over time, which is a major drawback.[24][27]
SquareTrade Protection Plans are only valid for new or Amazon certified refurbished products purchased at Amazon in the last 30 days. By purchasing this Protection Plan you agree to the Protection Plan Terms & Conditions (http://www.squaretrade.com/terms-standard). Your Protection Plan Terms & Conditions will be delivered via email within 24 hours of purchase
Additions of small amount (0.5 weight %) of nanoreinforcement (carbon nanotubes or nanoclay in the polymer matrix of composites, fiber sizing or interlaminar layers can allow to increase the fatigue resistance, shear or compressive strength as well as fracture toughness of the composites by 30–80%. Research has also shown that the incorporation of small amount of carbon nanotubes/CNT can increase the lifetime up to 1500%.
The first three are active solar systems, which use mechanical or electrical devices that convert the sun's heat or light to another form of usable energy. Passive solar buildings are designed and oriented to collect, store, and distribute the heat energy from sunlight to maintain the comfort of the occupants without the use of moving parts or electronics.
The life-cycle greenhouse-gas emissions of solar power are in the range of 22 to 46 gram (g) per kilowatt-hour (kWh) depending on if solar thermal or solar PV is being analyzed, respectively. With this potentially being decreased to 15 g/kWh in the future.[121] For comparison (of weighted averages), a combined cycle gas-fired power plant emits some 400–599 g/kWh,[122] an oil-fired power plant 893 g/kWh,[122] a coal-fired power plant 915–994 g/kWh[123] or with carbon capture and storage some 200 g/kWh, and a geothermal high-temp. power plant 91–122 g/kWh.[122] The life cycle emission intensity of hydro, wind and nuclear power are lower than solar's as of 2011 as published by the IPCC, and discussed in the article Life-cycle greenhouse-gas emissions of energy sources. Similar to all energy sources were their total life cycle emissions primarily lay in the construction and transportation phase, the switch to low carbon power in the manufacturing and transportation of solar devices would further reduce carbon emissions. BP Solar owns two factories built by Solarex (one in Maryland, the other in Virginia) in which all of the energy used to manufacture solar panels is produced by solar panels. A 1-kilowatt system eliminates the burning of approximately 170 pounds of coal, 300 pounds of carbon dioxide from being released into the atmosphere, and saves up to 105 gallons of water consumption monthly.[124]

In 2007, the US Congress directed the Department of Energy to report on ways to reduce water consumption by CSP. The subsequent report noted that dry cooling technology was available that, although more expensive to build and operate, could reduce water consumption by CSP by 91 to 95 percent. A hybrid wet/dry cooling system could reduce water consumption by 32 to 58 percent.[138] A 2015 report by NREL noted that of the 24 operating CSP power plants in the US, 4 used dry cooling systems. The four dry-cooled systems were the three power plants at the Ivanpah Solar Power Facility near Barstow, California, and the Genesis Solar Energy Project in Riverside County, California. Of 15 CSP projects under construction or development in the US as of March 2015, 6 were wet systems, 7 were dry systems, 1 hybrid, and 1 unspecified.
Large national and regional research projects on artificial photosynthesis are designing nanotechnology-based systems that use solar energy to split water into hydrogen fuel.[52] and a proposal has been made for a Global Artificial Photosynthesis project[53] In 2011, researchers at the Massachusetts Institute of Technology (MIT) developed what they are calling an "Artificial Leaf", which is capable of splitting water into hydrogen and oxygen directly from solar power when dropped into a glass of water. One side of the "Artificial Leaf" produces bubbles of hydrogen, while the other side produces bubbles of oxygen.[54]

While a single dramatic victory against something like the dirty Keystone XL pipeline can be nice to imagine, the truth is this is how we’re going to win: fighting at every level and with every tool we’ve got. We can’t stop until governments and fossil fuel corporations finally get the message that we need to put our dirty past behind us and fully commit to a clean future that works for all of us moving forward. 

Solar water heating makes an important contribution to renewable heat in many countries, most notably in China, which now has 70% of the global total (180 GWth). Most of these systems are installed on multi-family apartment buildings and meet a portion of the hot water needs of an estimated 50–60 million households in China. Worldwide, total installed solar water heating systems meet a portion of the water heating needs of over 70 million households. The use of biomass for heating continues to grow as well. In Sweden, national use of biomass energy has surpassed that of oil. Direct geothermal for heating is also growing rapidly.[28] The newest addition to Heating is from Geothermal Heat Pumps which provide both heating and cooling, and also flatten the electric demand curve and are thus an increasing national priority[29][30] (see also Renewable thermal energy).

At the end of 2006, the Ontario Power Authority (OPA, Canada) began its Standard Offer Program, a precursor to the Green Energy Act, and the first in North America for distributed renewable projects of less than 10 MW. The feed-in tariff guaranteed a fixed price of $0.42 CDN per kWh over a period of twenty years. Unlike net metering, all the electricity produced was sold to the OPA at the given rate.
Over $1 billion of federal money has been spent on the research and development of hydrogen and a medium for energy storage in the United States.[150] Both the National Renewable Energy Laboratory[151] and Sandia National Laboratories[152] have departments dedicated to hydrogen research. Hydrogen is useful for energy storage, and for use in airplanes and ships, but is not practical for automobile use, as it is not very efficient, compared to using a battery — for the same cost a person can travel three times as far using a battery electric vehicle.[153]
Green Pricing is an optional utility service for customers who want to help expand the production and distribution of renewable energy technologies. With green pricing, you do not have to change your electricity provider. Instead, customers choose to pay a premium on their electricity bill to cover the extra cost of purchasing clean, sustainable energy. As of March 2006, more than 600 utilities, electricity providers in 36 states offer a green pricing option.
There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of sustainable energy. This research spans several areas of focus across the sustainable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[94] Multiple federally supported research organizations have focused on sustainable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners.[95] Sandia has a total budget of $2.4 billion [96] while NREL has a budget of $375 million.[97]
Most small wind turbines do not perform quite as well as their manufacturers want you to believe. That should come as no surprise at this point. What may be surprising is that even the turbines of the more honourable manufacturers that are honest about performance fall short, more often than not. The likely cause is turbulence and improper site selection.
The world of small wind turbines is much like the wild-west of a century ago: Anything goes, and no claim is too bold. Wind turbine manufacturers will even routinely make claims that are not supported by the Laws of Physics. Energy production claims are often exaggerated, as are power curves. In fact, this is the rule, not the exception. Those manufacturers that tell the truth are the exception. Many manufacturers have never tested their wind turbines under real-world conditions. Some have never tested their turbine before selling it to unsuspecting customers. We are not joking! Because we sell grid-tie inverters for small wind turbines we have a front-row seat when it comes to actual operation of turbines of many makes and models. It turns out that some do not work; they self-destruct within days, and sometimes run away and blow their inverter within seconds after being turned onfor  the first time (clearly nobody at the factory bothered to ever test it).

Outline of energy Energy Units Conservation of energy Energetics Energy transformation Energy condition Energy transition Energy level Energy system Mass Negative mass Mass–energy equivalence Power Thermodynamics Quantum thermodynamics Laws of thermodynamics Thermodynamic system Thermodynamic state Thermodynamic potential Thermodynamic free energy Irreversible process Thermal reservoir Heat transfer Heat capacity Volume (thermodynamics) Thermodynamic equilibrium Thermal equilibrium Thermodynamic temperature Isolated system Entropy Free entropy Entropic force Negentropy Work Exergy Enthalpy

12 Month Financing: For a limited time, purchase $599 or more using the Amazon.com Store Card and pay no interest for 12 months on your entire order if paid in full in 12 months. Interest will be charged to your account from the purchase date if the promotional balance is not paid in full within 12 months. Minimum monthly payments required. Subject to credit approval. Apply now.
It is possible to use any type of solar thermal panel (sheet and tubes, roll-bond, heat pipe, thermal plates) or hybrid (mono/polycrystalline, thin film) in combination with the heat pump. The use of a hybrid panel is preferable because it allows covering a part of the electricity demand of the heat pump and reduce the power consumption and consequently the variable costs of the system.
Green energy is the term used to describe sources of energy that are considered to be environmentally friendly and non-polluting, such as geothermal, wind, solar, and hydro. Sometimes nuclear power is also considered a green energy source. Green energy sources are often considered "green" because they are perceived to lower carbon emissions and create less pollution.

Heat pumps and Thermal energy storage are classes of technologies that can enable the utilization of renewable energy sources that would otherwise be inaccessible due to a temperature that is too low for utilization or a time lag between when the energy is available and when it is needed. While enhancing the temperature of available renewable thermal energy, heat pumps have the additional property of leveraging electrical power (or in some cases mechanical or thermal power) by using it to extract additional energy from a low quality source (such as seawater, lake water, the ground, the air, or waste heat from a process).
A regular alternator out of a car needs to be modified to produce anything meaningful above a few volts if any at low RPM. If this guy is not totally bullshit lieing, he is using a modified PMA alternator (permanent magnet alternator) and if not the voltage he is so proudly showing is actually a voltage drop caused by the alternator using power to power it's field coil. This is very misleading to newcomers to the field of renewable energy and makes a mockery of it. And if he really wanted to help people build this he would have should people how to wire the alternator up . Including explaining things like the wires on the regulator the ignition switch , the stator and the field wires. This is why rednecks laugh at liberals because they see shit like this. .
“California Looks to Stationary Energy Storage as a Solution to Peaker Plants” • Central California electric utility Pacific Gas & Electric is planning to replace three old natural gas power plants in its network with stationary energy storage installations from Tesla. California is looking to add 1.3 GW of storage to its power grid by 2020. [CleanTechnica]
Going forward, there is hope for the small wind future! Certification programs are under way in various places to provide real turbine performance data. In North America this is being spearheaded by the Small Wind Certification Council, which requires third-party certification of turbine performance in a standardized fashion. Manufacturers will no longer be able to fudge power curves, or specify ‘rated power’ at hurricane-force wind speeds. This will allow you, the consumer, to compare turbines on a much more even footing.
Current Texas solar incentives include generous rebates for solar electric and solar hot water systems.  When combined with Federal solar rebates your solar panel installation will be approximately 50% less because of the incentives!  Our solar installers will be happy to answer your questions and explain the benefits of solar power.  Simply click the image below, fill in the form, and a certified solar installer will contact you by phone at your convenience.

Materials that are typically used for the rotor blades in wind turbines are composites, as they tend to have a high stiffness, high strength, high fatigue resistance, and low weight.[46] Typical resins used for these composites include polyester and epoxy, while glass and carbon fibers have been used for the reinforcing material.[47] Construction may use manual layup techniques or composite resin injection molding. As the price of glass fibers is only about one tenth the price of carbon fiber, glass fiber is still dominant.
Renewable energy resources and significant opportunities for energy efficiency exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency, and technological diversification of energy sources, would result in significant energy security and economic benefits.[8] It would also reduce environmental pollution such as air pollution caused by burning of fossil fuels and improve public health, reduce premature mortalities due to pollution and save associated health costs that amount to several hundred billion dollars annually only in the United States.[21] Renewable energy sources, that derive their energy from the sun, either directly or indirectly, such as hydro and wind, are expected to be capable of supplying humanity energy for almost another 1 billion years, at which point the predicted increase in heat from the sun is expected to make the surface of the earth too hot for liquid water to exist.[22][23]

Even if you can’t directly purchase and install a solar system because you rent your home, have inadequate solar resources, or lack financing, you may still benefit from switching to solar electricity, and there numerous business models that make solar easier, cheaper, and more accessible. Options such as community or shared solar programs, solar leases, and power-purchase agreements allow millions of households to take advantage of solar energy. Learn about the various ways you can go solar.
I ask Gore about the lessons he takes from Georgetown. “I think it’s important to pay attention to a CPA who becomes a mayor and takes an objective look at how he can save money for the citizens of his community, even if it means ignoring ideological presuppositions about fossil energy. Especially when the mayor in question is in the heart of oil and gas country.”
Solar power is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV), indirectly using concentrated solar power, or a combination. Concentrated solar power systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Photovoltaic cells convert light into an electric current using the photovoltaic effect.[1]
×