America is embracing renewables, slowly. In 2016, Massachusetts passed a law promoting a huge investment in wind and hydropower; the first megawatt is expected to hit the grid in 2020. Early this year New York State announced plans to spend 12 years building the infrastructure for a $6 billion offshore wind power industry. Hawaii has pledged to be powered entirely by renewable energy—in 2045. Atlanta’s goal is 2035 and San Francisco’s is 2030. Typically, plans to convert to sustainable energy stretch on for decades.
Most installers overrate the available wind resource. The majority of small wind turbine installations underperforms their predictions, often by a wide margin. Since wind speed is the most important parameter for turbine energy production, getting that wrong has large consequences (the power in the wind goes with the cube of the wind speed, so double the wind speed and the power in it is 2 * 2 * 2 = 8x as much). You have to be realistic about your annual average wind speed.
Manufacturers often claim that their vertical axis turbine is better at extracting power from low speed winds. Unfortunately the laws of physics get in the way here: There is very little power in low speed winds. The blade of a vertical or horizontal type turbine is equally good at extracting that power, though with the vertical type the blades move at an angle to the wind where they do not extract energy for part of every rotation, adding drag and making a vertical type turbine just a little less efficient than a similar sized horizontal one. There is no advantage when it comes to low winds.
Previously, the largest U.S. city fully powered by renewables was Burlington, Vermont (pop. 42,000), home to Senator Bernie Sanders, the jam band Phish and the original Ben & Jerry’s. Georgetown’s feat is all the more dramatic because it demolishes the notion that sustainability is synonymous with socialism and GMO-free ice cream. “You think of climate change and renewable energy, from a political standpoint, on the left-hand side of the spectrum, and what I’ve done is toss all those partisan political thoughts aside,” Ross says. “We’re doing this because it’s good for our citizens. Cheaper electricity is better. Clean energy is better than fossil fuels.”
The first words of everyone calling us are “the wind is blowing here all the time”. People consistently overestimate how windy their place actually is. They forget about all the times the wind does not blow, and only remember the windy days. Such is human nature. Before even considering a small wind turbine you need to have a good idea of the annual average wind speed for your site. The gold standard is to install a data-logging anemometer (wind meter) at the same height and location as the proposed wind turbine, and let it run for 3 to 5 years. Truth is that it is usually much too expensive to do for small wind turbines, and while logging for 1 year could give you some idea and is the absolute minimum for worthwhile wind information, it is too short to be very reliable. For most of us, the more economical way to find out about the local average wind speed is by looking at a wind atlas, meteorological data, airport information and possibly the local vegetation (for windy spots the trees take on interesting shapes).

Geothermal energy - Just under the earth's crust are massive amounts of thermal energy, which originates from both the original formation of the planet and the radioactive decay of minerals. Geothermal energy in the form of hot springs has been used by humans for millennia for bathing, and now it's being used to generate electricity. In North America alone, there's enough energy stored underground to produce 10 times as much electricity as coal currently does.


At the end of 2014, worldwide PV capacity reached at least 177,000 megawatts. Photovoltaics grew fastest in China, followed by Japan and the United States, while Germany remains the world's largest overall producer of photovoltaic power, contributing about 7.0 percent to the overall electricity generation. Italy meets 7.9 percent of its electricity demands with photovoltaic power—the highest share worldwide.[119] For 2015, global cumulative capacity is forecasted to increase by more than 50 gigawatts (GW). By 2018, worldwide capacity is projected to reach as much as 430 gigawatts. This corresponds to a tripling within five years.[120] Solar power is forecasted to become the world's largest source of electricity by 2050, with solar photovoltaics and concentrated solar power contributing 16% and 11%, respectively. This requires an increase of installed PV capacity to 4,600 GW, of which more than half is expected to be deployed in China and India.[121]

With investment subsidies, the financial burden falls upon the taxpayer, while with feed-in tariffs the extra cost is distributed across the utilities' customer bases. While the investment subsidy may be simpler to administer, the main argument in favour of feed-in tariffs is the encouragement of quality. Investment subsidies are paid out as a function of the nameplate capacity of the installed system and are independent of its actual power yield over time, thus rewarding the overstatement of power and tolerating poor durability and maintenance. Some electric companies offer rebates to their customers, such as Austin Energy in Texas, which offers $2.50/watt installed up to $15,000.[96]

However, it has been found that high emissions are associated only with shallow reservoirs in warm (tropical) locales, and recent innovations in hydropower turbine technology are enabling efficient development of low-impact run-of-the-river hydroelectricity projects.[17] Generally speaking, hydroelectric plants produce much lower life-cycle emissions than other types of generation. Hydroelectric power, which underwent extensive development during growth of electrification in the 19th and 20th centuries, is experiencing resurgence of development in the 21st century. The areas of greatest hydroelectric growth are the booming economies of Asia. China is the development leader; however, other Asian nations are installing hydropower at a rapid pace. This growth is driven by much increased energy costs—especially for imported energy—and widespread desires for more domestically produced, clean, renewable, and economical generation.


A typical house usually requires a home wind turbine with a 5 kW generating capacity to meet all its energy requirements. A turbine that offers this much power would have to be around 13 to 18 feet in diameter and positioned in an area where strong winds often pass through. There are also plenty of smaller, cheaper turbines, but these variants produce less power and are less reliable than their more expensive counterparts.
“Climate Change Helped Make California a Tinder Box for its Record-Setting Wildfires” • Camp Fire, which is devastating Sierra Nevada foothills, has become the most destructive wildfire in California’s history. By the evening of November 10, it had scorched 105,000 acres of land and killed 23 people, with more than 100 people still unaccounted for. [Quartz]
Wind power - Air flow on the earth's surface can be used to push turbines, with stronger winds producing more energy. High-altitude sites and areas just offshore tend to provide the best conditions for capturing the strongest winds. According to a 2009 study, a network of land-based, 2.5-megawatt wind turbines in rural areas operating at just 20% of their rated capacity could supply 40 times the current worldwide consumption of energy.

Common battery technologies used in today's home PV systems include, the valve regulated lead-acid battery– a modified version of the conventional lead–acid battery, nickel–cadmium and lithium-ion batteries. Lead-acid batteries are currently the predominant technology used in small-scale, residential PV systems, due to their high reliability, low self discharge and investment and maintenance costs, despite shorter lifetime and lower energy density. However, lithium-ion batteries have the potential to replace lead-acid batteries in the near future, as they are being intensively developed and lower prices are expected due to economies of scale provided by large production facilities such as the Gigafactory 1. In addition, the Li-ion batteries of plug-in electric cars may serve as a future storage devices in a vehicle-to-grid system. Since most vehicles are parked an average of 95 percent of the time, their batteries could be used to let electricity flow from the car to the power lines and back. Other rechargeable batteries used for distributed PV systems include, sodium–sulfur and vanadium redox batteries, two prominent types of a molten salt and a flow battery, respectively.[114][115][116]


Green-e is a voluntary certification program for renewable electricity products. The Green-e program establishes consumer protection and environmental standards for electricity products, and verifies that these products meet the standards. The Green-e logo certifies that at least half the power supplied is from renewable sources. Many products will carry the Green-e logo, and the best way to find the most environmentally sensitive providers is by doing some comparison research. To find out which Green-e certified products are available in your state, visit Green-e's electric choices page. Questions about particular providers can be directed to the Center for Resources Solutions, which administers the Green-e program, at (415) 561-2100.
Wind-generated electricity met nearly 4% of global electricity demand in 2015, with nearly 63 GW of new wind power capacity installed. Wind energy was the leading source of new capacity in Europe, the US and Canada, and the second largest in China. In Denmark, wind energy met more than 40% of its electricity demand while Ireland, Portugal and Spain each met nearly 20%.
The US National Renewable Energy Laboratory (NREL), in harmonizing the disparate estimates of life-cycle GHG emissions for solar PV, found that the most critical parameter was the solar insolation of the site: GHG emissions factors for PV solar are inversely proportional to insolation.[125] For a site with insolation of 1700 kWh/m2/year, typical of southern Europe, NREL researchers estimated GHG emissions of 45 gCO2e/kWh. Using the same assumptions, at Phoenix, USA, with insolation of 2400 kWh/m2/year, the GHG emissions factor would be reduced to 32 g of CO2e/kWh.[126]
Research is also undertaken in this field of artificial photosynthesis. It involves the use of nanotechnology to store solar electromagnetic energy in chemical bonds, by splitting water to produce hydrogen fuel or then combining with carbon dioxide to make biopolymers such as methanol. Many large national and regional research projects on artificial photosynthesis are now trying to develop techniques integrating improved light capture, quantum coherence methods of electron transfer and cheap catalytic materials that operate under a variety of atmospheric conditions.[119] Senior researchers in the field have made the public policy case for a Global Project on Artificial Photosynthesis to address critical energy security and environmental sustainability issues.[120]
Energy storage is a collection of methods used to store electrical energy on an electrical power grid, or off it. Electrical energy is stored during times when production (especially from intermittent power plants such as renewable electricity sources such as wind power, tidal power, solar power) exceeds consumption, and returned to the grid when production falls below consumption. Pumped-storage hydroelectricity is used for more than 90% of all grid power storage. Costs of lithium ion batteries are dropping rapidly, and are increasingly being deployed as fast acting sources of grid power (i.e. operating reserve) and for domestic storage.
These residential renewable energy plans are sourced from 100% wind power generation. In addition, a Green Power plan lets you lock in a secure, fixed energy rate with the same key benefits as Champion Energy’s traditional electricity plans. This is an ideal choice for customers looking for ways to preserve the environment, conserve natural resources and promote the growth of renewable energy infrastructure.
The PV industry is beginning to adopt levelized cost of electricity (LCOE) as the unit of cost. The electrical energy generated is sold in units of kilowatt-hours (kWh). As a rule of thumb, and depending on the local insolation, 1 watt-peak of installed solar PV capacity generates about 1 to 2 kWh of electricity per year. This corresponds to a capacity factor of around 10–20%. The product of the local cost of electricity and the insolation determines the break even point for solar power. The International Conference on Solar Photovoltaic Investments, organized by EPIA, has estimated that PV systems will pay back their investors in 8 to 12 years.[73] As a result, since 2006 it has been economical for investors to install photovoltaics for free in return for a long term power purchase agreement. Fifty percent of commercial systems in the United States were installed in this manner in 2007 and over 90% by 2009.[74]
Those not satisfied with the third-party grid approach to green energy via the power grid can install their own locally based renewable energy system. Renewable energy electrical systems from solar to wind to even local hydro-power in some cases, are some of the many types of renewable energy systems available locally. Additionally, for those interested in heating and cooling their dwelling via renewable energy, geothermal heat pump systems that tap the constant temperature of the earth, which is around 7 to 15 degrees Celsius a few feet underground and increases dramatically at greater depths, are an option over conventional natural gas and petroleum-fueled heat approaches. Also, in geographic locations where the Earth's Crust is especially thin, or near volcanoes (as is the case in Iceland) there exists the potential to generate even more electricity than would be possible at other sites, thanks to a more significant temperature gradient at these locales.
Renewable energy resources exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency is resulting in significant energy security, climate change mitigation, and economic benefits.[8] The results of a recent review of the literature[9] concluded that as greenhouse gas (GHG) emitters begin to be held liable for damages resulting from GHG emissions resulting in climate change, a high value for liability mitigation would provide powerful incentives for deployment of renewable energy technologies. In international public opinion surveys there is strong support for promoting renewable sources such as solar power and wind power.[10] At the national level, at least 30 nations around the world already have renewable energy contributing more than 20 percent of energy supply. National renewable energy markets are projected to continue to grow strongly in the coming decade and beyond.[11] Some places and at least two countries, Iceland and Norway generate all their electricity using renewable energy already, and many other countries have the set a goal to reach 100% renewable energy in the future. For example, in Denmark the government decided to switch the total energy supply (electricity, mobility and heating/cooling) to 100% renewable energy by 2050.[12]
This is a wind map of the lands south of the border (the US) for 30 meters (100′) height, a very common height for small wind turbine installations. Anything green or yellow is not a good wind resource location. Here in Canada the distribution is similar, in that the good places are in the mid-west and very close to the shores of the great lakes and oceans.
In 2010, the International Energy Agency predicted that global solar PV capacity could reach 3,000 GW or 11% of projected global electricity generation by 2050—enough to generate 4,500 TWh of electricity.[40] Four years later, in 2014, the agency projected that, under its "high renewables" scenario, solar power could supply 27% of global electricity generation by 2050 (16% from PV and 11% from CSP).[2]
×