Concentrated solar power plants may use thermal storage to store solar energy, such as in high-temperature molten salts. These salts are an effective storage medium because they are low-cost, have a high specific heat capacity, and can deliver heat at temperatures compatible with conventional power systems. This method of energy storage is used, for example, by the Solar Two power station, allowing it to store 1.44 TJ in its 68 m³ storage tank, enough to provide full output for close to 39 hours, with an efficiency of about 99%.[110]
Renewable energy projects in many developing countries have demonstrated that renewable energy can directly contribute to poverty reduction by providing the energy needed for creating businesses and employment. Renewable energy technologies can also make indirect contributions to alleviating poverty by providing energy for cooking, space heating, and lighting. Renewable energy can also contribute to education, by providing electricity to schools.[140]

The key disadvantages include the relatively low rotational speed with the consequential higher torque and hence higher cost of the drive train, the inherently lower power coefficient, the 360-degree rotation of the aerofoil within the wind flow during each cycle and hence the highly dynamic loading on the blade, the pulsating torque generated by some rotor designs on the drive train, and the difficulty of modelling the wind flow accurately and hence the challenges of analysing and designing the rotor prior to fabricating a prototype.[28]
Renewable energy (and energy efficiency) are no longer niche sectors that are promoted only by governments and environmentalists. The increased levels of investment and the fact that much of the capital is coming from more conventional financial actors suggest that sustainable energy options are now becoming mainstream.[63] An example of this would be The Alliance to Save Energy's Project with Stahl Consolidated Manufacturing, (Huntsville, Alabama, USA) (StahlCon 7), a patented generator shaft designed to reduce emissions within existing power generating systems, granted publishing rights to the Alliance in 2007.

Ross is now an energy celebrity, sitting on conference panels and lending Georgetown’s cachet to environmental-film screenings. And it isn’t only conservatives who buttonhole him. As if to prove the adage that no good deed goes unpunished, he also hears from people who worry about the impact of renewables. “They’ll come up to me and say with a straight face, ‘You know what? Those windmills are killing birds,’ ” Ross says. “ ‘Oh, really? I didn’t know that was a big interest of yours, but you know what the number-one killer of birds is in this country? Domestic house cats. Kill about four billion birds a year. You know what the number-two killer of birds is? Buildings they fly into. So you’re suggesting that we outlaw house cats and buildings?’ They go, ‘That's not exactly what I meant.’”

While a single dramatic victory against something like the dirty Keystone XL pipeline can be nice to imagine, the truth is this is how we’re going to win: fighting at every level and with every tool we’ve got. We can’t stop until governments and fossil fuel corporations finally get the message that we need to put our dirty past behind us and fully commit to a clean future that works for all of us moving forward. 
The locations with highest annual solar irradiance lie in the arid tropics and subtropics. Deserts lying in low latitudes usually have few clouds, and can receive sunshine for more than ten hours a day.[86][87] These hot deserts form the Global Sun Belt circling the world. This belt consists of extensive swathes of land in Northern Africa, Southern Africa, Southwest Asia, Middle East, and Australia, as well as the much smaller deserts of North and South America.[88] Africa's eastern Sahara Desert, also known as the Libyan Desert, has been observed to be the sunniest place on Earth according to NASA.[89][90]
Power Scorecard is a web tool that rates the environmental quality of electricity offered to customers in California, New Jersey, New York, Pennsylvania, and Texas. It will help identify products that have the lowest overall environmental impact on our air, land, and water, and those that will lead to the development of the most new renewable energy generation. Power Scorecard will be expanding into other states in the near future.
As competition in the wind market increases, companies are seeking ways to draw greater efficiency from their designs. One of the predominant ways wind turbines have gained performance is by increasing rotor diameters, and thus blade length. Retrofitting current turbines with larger blades mitigates the need and risks associated with a system-level redesign. As the size of the blade increases, its tendency to deflect also increases. Thus, from a materials perspective, the stiffness-to-weight is of major importance. As the blades need to function over a 100 million load cycles over a period of 20–25 years, the fatigue life of the blade materials is also of utmost importance. By incorporating carbon fiber into parts of existing blade systems, manufacturers may increase the length of the blades without increasing their overall weight. For instance, the spar cap, a structural element of a turbine blade, commonly experiences high tensile loading, making it an ideal candidate to utilize the enhanced tensile properties of carbon fiber in comparison to glass fiber.[47] Higher stiffness and lower density translates to thinner, lighter blades offering equivalent performance. In a 10 (MW) turbine—which will become more common in offshore systems by 2021—blades may reach over 100 m in length and weigh up to 50 metric tons when fabricated out of glass fiber. A switch to carbon fiber in the structural spar of the blade yields weight savings of 20 to 30 percent, or approximately 15 metric tons.[48]

The array of a photovoltaic power system, or PV system, produces direct current (DC) power which fluctuates with the sunlight's intensity. For practical use this usually requires conversion to certain desired voltages or alternating current (AC), through the use of inverters.[4] Multiple solar cells are connected inside modules. Modules are wired together to form arrays, then tied to an inverter, which produces power at the desired voltage, and for AC, the desired frequency/phase.[4]