Dale Ross, the mayor of Georgetown, Texas, has a big smile, a big handshake and a big personality. In last year’s election, he won big, with 72 percent of the vote. The key to his success? “Without being too self-reflective,” he says, “I just like people.” He’s a Republican, and his priorities are party staples: go light on regulation, be tough on crime, keep taxes low. But the thing that is winning him international renown is straight out of the liberal playbook—green power. Thanks to his (big) advocacy, Georgetown (pop. 67,000) last year became the largest city in the United States to be powered entirely by renewable energy.
Renewable energy, after its generation, needs to be stored in a medium for use with autonomous devices as well as vehicles. Also, to provide household electricity in remote areas (that is areas which are not connected to the mains electricity grid), energy storage is required for use with renewable energy. Energy generation and consumption systems used in the latter case are usually stand-alone power systems.
Enhanced geothermal systems (EGS) are a new type of geothermal power technologies that do not require natural convective hydrothermal resources. The vast majority of geothermal energy within drilling reach is in dry and non-porous rock.[161] EGS technologies "enhance" and/or create geothermal resources in this "hot dry rock (HDR)" through hydraulic stimulation. EGS and HDR technologies, such as hydrothermal geothermal, are expected to be baseload resources which produce power 24 hours a day like a fossil plant. Distinct from hydrothermal, HDR and EGS may be feasible anywhere in the world, depending on the economic limits of drill depth. Good locations are over deep granite covered by a thick (3–5 km) layer of insulating sediments which slow heat loss.[162] There are HDR and EGS systems currently being developed and tested in France, Australia, Japan, Germany, the U.S. and Switzerland. The largest EGS project in the world is a 25 megawatt demonstration plant currently being developed in the Cooper Basin, Australia. The Cooper Basin has the potential to generate 5,000–10,000 MW.

Free electricity isnt all you get from a new home wind Generator, as soon as your system is up, you have improved your home value by atleast an equal amount of the investment. Your green energy home is more likely to sell compared to others with no home generation or emergency power system. Think about it. Look at homes for sale.. Can any of them generate their own free electricity, how many can compete with such a solid green energy capability like your home wind Generator delivers. Its also an attention getter and will bring people to see what its about if you ever need to sell, your home has a dramatic edge and a higher resale value.
A Wind Turbine Generator is what makes your electricity by converting mechanical energy into electrical energy. Lets be clear here, they do not create energy or produce more electrical energy than the amount of mechanical energy being used to spin the rotor blades. The greater the “load”, or electrical demand placed on the generator, the more mechanical force is required to turn the rotor. This is why generators come in different sizes and produce differing amounts of electricity.
From 1978 to 1996, the National Renewable Energy Laboratory experimented with producing algae fuel in the "Aquatic Species Program."[112] A self-published article by Michael Briggs, at the University of New Hampshire Biofuels Group, offers estimates for the realistic replacement of all motor vehicle fuel with biofuels by utilizing algae that have a natural oil content greater than 50%, which Briggs suggests can be grown on algae ponds at wastewater treatment plants.[113] This oil-rich algae can then be extracted from the system and processed into biofuels, with the dried remainder further reprocessed to create ethanol. The production of algae to harvest oil for biofuels has not yet been undertaken on a commercial scale, but feasibility studies have been conducted to arrive at the above yield estimate. During the biofuel production process algae actually consumes the carbon dioxide in the air and turns it into oxygen through photosynthesis.[114] In addition to its projected high yield, algaculture— unlike food crop-based biofuels — does not entail a decrease in food production, since it requires neither farmland nor fresh water. Many companies are pursuing algae bio-reactors for various purposes, including scaling up biofuels production to commercial levels.[115][116]
The heat that is used for geothermal energy can be from deep within the Earth, all the way down to Earth's core – 4,000 miles (6,400 km) down. At the core, temperatures may reach over 9,000 °F (5,000 °C). Heat conducts from the core to surrounding rock. Extremely high temperature and pressure cause some rock to melt, which is commonly known as magma. Magma convects upward since it is lighter than the solid rock. This magma then heats rock and water in the crust, sometimes up to 700 °F (371 °C).[58]
“What Changes Will Maine’s New Government Bring to Your Life?” • Swept to sizable majorities in last week’s elections, Maine’s Democrats will be in full control of state government for the first time since 2010. They are likely to look for ways to address a number of pressing issues, one of which is climate change. [Kennebec Journal & Morning Sentinel]
Infinitemall stands behind their products and is willing to bend over backwards to help the customer. I live in rural Alaska, power here is very expensive and is generated mainly by diesel generators. My family and I are constructing a grid-tied alternative energy home. Outback Inverters and charge controllers are at the heart of the system, with a total of 8KW in solar panels and 5kw in wind generators. I have also constructed a D/C generator using an old 4 wheeler motor and 2 MWS Freedom II Generals that produces an easy 3.5kw at low engine rpms. The system totals close to 20kw in all. I purchased this wind mill to replace an older wind mill that I had built a few years ago using Windy Nations PMG. When I received the wind generator, I was disappointed to find that the center hole for the shaft had not been machined. Infintemall was very helpful, they got a new turbine out to me right away, and even paid for the defective unit to be returned. All said and done, they are a great company to deal with and I would highly recommend their turbine. It is very quiet, and quite powerful.
As local wind speed increases, so does the power output. Since this type of generator uses wind as 'fuel', it is important to choose an appropriate site for mounting the turbine. The ideal location for a wind generator is 20 feet above any surrounding object within a 250-foot radius. Wind speed increases with height above ground, so a taller mast can provide significant gains in energy production.
In the United States, one of the main problems with purchasing green energy through the electrical grid is the current centralized infrastructure that supplies the consumer’s electricity. This infrastructure has led to increasingly frequent brown outs and black outs, high CO2 emissions, higher energy costs, and power quality issues.[89] An additional $450 billion will be invested to expand this fledgling system over the next 20 years to meet increasing demand.[90] In addition, this centralized system is now being further overtaxed with the incorporation of renewable energies such as wind, solar, and geothermal energies. Renewable resources, due to the amount of space they require, are often located in remote areas where there is a lower energy demand. The current infrastructure would make transporting this energy to high demand areas, such as urban centers, highly inefficient and in some cases impossible. In addition, despite the amount of renewable energy produced or the economic viability of such technologies only about 20 percent will be able to be incorporated into the grid. To have a more sustainable energy profile, the United States must move towards implementing changes to the electrical grid that will accommodate a mixed-fuel economy.[91]
Taken together, the generation and distribution of electric power in the United States is an astonishingly complex undertaking. Utilities may generate their own power or buy it from other utilities; that power travels over a grid of transformers and high- and low-voltage lines to your house. Ownership of utilities varies from nonprofits to cooperatives to for-profits. Federal regulators ultimately oversee the grid. Amazingly, when you flip a switch, electricity is there.

The energy number that is left over should be a good approximation of what you can expect from that VAWT. Compare the resulting numbers with those mentioned in just about all sales brochures of VAWT type turbines and it should be immediately clear that their marketing people are smoking The Good Stuff. There is no relation to physical reality in their numbers, they are consistently much too high. Keep in mind that the energy production numbers calculated here are ‘best case’; for a turbine in nice, smooth air. Most VAWTs are placed very close to the ground, or on buildings, where there is little wind and lots of turbulence. Under those conditions they will do much, much worse than predicted.
Geothermal power plants can operate 24 hours per day, providing base-load capacity, and the world potential capacity for geothermal power generation is estimated at 85 GW over the next 30 years. However, geothermal power is accessible only in limited areas of the world, including the United States, Central America, East Africa, Iceland, Indonesia, and the Philippines. The costs of geothermal energy have dropped substantially from the systems built in the 1970s.[10] Geothermal heat generation can be competitive in many countries producing geothermal power, or in other regions where the resource is of a lower temperature. Enhanced geothermal system (EGS) technology does not require natural convective hydrothermal resources, so it can be used in areas that were previously unsuitable for geothermal power, if the resource is very large. EGS is currently under research at the U.S. Department of Energy.
Although many older thermoelectric power plants with once-through cooling or cooling ponds use more water than CSP, meaning that more water passes through their systems, most of the cooling water returns to the water body available for other uses, and they consume less water by evaporation. For instance, the median coal power plant in the US with once-through cooling uses 36,350 gal/MWhr, but only 250 gal/MWhr (less than one percent) is lost through evaporation.[139] Since the 1970s, the majority of US power plants have used recirculating systems such as cooling towers rather than once-through systems.[140]
With our 7 to 11 blade models, you'll get power generation in low wind areas. Regions and locations with high wind speeds are perfect for 3 to 5 blade configurations. No matter your location, we have the ideal wind turbine and blade set combination for you! Feel free to contact one of our many sales associates or technicians to get you started, to improve an existing setup, or to further your project.
With Georgetown emerging as a brave new model for a renewable city, it makes sense to ask if others can achieve the same magical balance of more power, less pollution and lower costs. In fact, cities ranging from Orlando to St. Louis to San Francisco to Portland, Oregon, have pledged to run entirely on renewable energy. Those places are much larger than Georgetown, of course, and no one would expect misty Portland to power a light bulb for long with solar energy, which is crucial to Georgetown’s success. But beyond its modest size, abundant sunshine and archetype-busting mayor, Georgetown has another edge, one that’s connected to a cherished Lone Star ideal: freedom.

However, it has been found that high emissions are associated only with shallow reservoirs in warm (tropical) locales, and recent innovations in hydropower turbine technology are enabling efficient development of low-impact run-of-the-river hydroelectricity projects.[17] Generally speaking, hydroelectric plants produce much lower life-cycle emissions than other types of generation. Hydroelectric power, which underwent extensive development during growth of electrification in the 19th and 20th centuries, is experiencing resurgence of development in the 21st century. The areas of greatest hydroelectric growth are the booming economies of Asia. China is the development leader; however, other Asian nations are installing hydropower at a rapid pace. This growth is driven by much increased energy costs—especially for imported energy—and widespread desires for more domestically produced, clean, renewable, and economical generation.

VAWT type turbines have no inherent advantage over HAWT type turbines. There, we have said it! VAWTs do not do any better in turbulent wind than HAWTs. Leaving the Savonius type VAWTs out (the type that looks like an oil drum cut in half – they have very poor efficiency anyway), both horizontal and vertical type turbines rely on an airfoil, a wing, to produce power. Airfoils simply do not work well in turbulent air; the wind needs to hit them at just the right angle and eddies wreak havoc. Couple that with the insistence of vertical axis turbine manufacturers to install their devices on very short towers or rooftops, and you get the picture. It will not work.
Large three-bladed horizontal-axis wind turbines (HAWT), with the blades upwind of the tower produce the overwhelming majority of windpower in the world today. These turbines have the main rotor shaft and electrical generator at the top of a tower, and must be pointed into the wind. Small turbines are pointed by a simple wind vane, while large turbines generally use a wind sensor coupled with a yaw system. Most have a gearbox, which turns the slow rotation of the blades into a quicker rotation that is more suitable to drive an electrical generator.[25] Some turbines use a different type of generator suited to slower rotational speed input. These don't need a gearbox, and are called direct-drive, meaning they couple the rotor directly to the generator with no gearbox in between. While permanent magnet direct-drive generators can be more costly due to the rare earth materials required, these gearless turbines are sometimes preferred over gearbox generators because they "eliminate the gear-speed increaser, which is susceptible to significant accumulated fatigue torque loading, related reliability issues, and maintenance costs."[26]
Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns and speeds vary greatly across the United States and are modified by bodies of water, vegetation, and differences in terrain. Humans use this wind flow, or motion energy, for many purposes: sailing, flying a kite, and even generating electricity.
The Instapark SP-50W solar panel offers you a The Instapark SP-50W solar panel offers you a quiet clean while carbon-free alternative. Capable of converting virtually unlimited solar energy into clean green most importantly free electricity this solar panel is made of high efficiency mono-crystalline solar cells embedded in transparent vinyl acetate behind tempered glass with heavy back sheet ...  More + Product Details Close
Solar electricity is inherently variable and predictable by time of day, location, and seasons. In addition solar is intermittent due to day/night cycles and unpredictable weather. How much of a special challenge solar power is in any given electric utility varies significantly. In a summer peak utility, solar is well matched to daytime cooling demands. In winter peak utilities, solar displaces other forms of generation, reducing their capacity factors.

The key disadvantages include the relatively low rotational speed with the consequential higher torque and hence higher cost of the drive train, the inherently lower power coefficient, the 360-degree rotation of the aerofoil within the wind flow during each cycle and hence the highly dynamic loading on the blade, the pulsating torque generated by some rotor designs on the drive train, and the difficulty of modelling the wind flow accurately and hence the challenges of analysing and designing the rotor prior to fabricating a prototype.[28]

As the cost of solar electricity has fallen, the number of grid-connected solar PV systems has grown into the millions and utility-scale solar power stations with hundreds of megawatts are being built. Solar PV is rapidly becoming an inexpensive, low-carbon technology to harness renewable energy from the Sun. The current largest photovoltaic power station in the world is the 850 MW Longyangxia Dam Solar Park, in Qinghai, China.
×