Heat pumps and Thermal energy storage are classes of technologies that can enable the utilization of renewable energy sources that would otherwise be inaccessible due to a temperature that is too low for utilization or a time lag between when the energy is available and when it is needed. While enhancing the temperature of available renewable thermal energy, heat pumps have the additional property of leveraging electrical power (or in some cases mechanical or thermal power) by using it to extract additional energy from a low quality source (such as seawater, lake water, the ground, the air, or waste heat from a process).
At the end of 2014, worldwide PV capacity reached at least 177,000 megawatts. Photovoltaics grew fastest in China, followed by Japan and the United States, while Germany remains the world's largest overall producer of photovoltaic power, contributing about 7.0 percent to the overall electricity generation. Italy meets 7.9 percent of its electricity demands with photovoltaic power—the highest share worldwide.[119] For 2015, global cumulative capacity is forecasted to increase by more than 50 gigawatts (GW). By 2018, worldwide capacity is projected to reach as much as 430 gigawatts. This corresponds to a tripling within five years.[120] Solar power is forecasted to become the world's largest source of electricity by 2050, with solar photovoltaics and concentrated solar power contributing 16% and 11%, respectively. This requires an increase of installed PV capacity to 4,600 GW, of which more than half is expected to be deployed in China and India.[121]
In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries' energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared".[49] Italy has the largest proportion of solar electricity in the world, in 2015 solar supplied 7.8% of electricity demand in Italy.[54] In 2016, after another year of rapid growth, solar generated 1.3% of global power.[55]

Maybe you reside on a boat, vacation in a remote cabin, or live off-grid like me. Or perhaps you’re just interested in lowering your energy bill. Either way, with a handful of inexpensive and easy-to-source materials, you can build a homemade wind generator, making electricity yours for the taking for as long as the wind is blowing. You’ll be able to light up that storeroom, power your barn, or use a generator to keep all your vehicle batteries charged.


As of 2012, the Alta Wind Energy Center (California, 1,020 MW) is the world's largest wind farm.[107] The London Array (630 MW) is the largest offshore wind farm in the world. The United Kingdom is the world's leading generator of offshore wind power, followed by Denmark.[108] There are several large offshore wind farms operational and under construction and these include Anholt (400 MW), BARD (400 MW), Clyde (548 MW), Fântânele-Cogealac (600 MW), Greater Gabbard (500 MW), Lincs (270 MW), London Array (630 MW), Lower Snake River (343 MW), Macarthur (420 MW), Shepherds Flat (845 MW), and the Sheringham Shoal (317 MW).
Many industrialized nations have installed significant solar power capacity into their grids to supplement or provide an alternative to conventional energy sources while an increasing number of less developed nations have turned to solar to reduce dependence on expensive imported fuels (see solar power by country). Long distance transmission allows remote renewable energy resources to displace fossil fuel consumption. Solar power plants use one of two technologies:
×