“Climate Change Helped Make California a Tinder Box for its Record-Setting Wildfires” • Camp Fire, which is devastating Sierra Nevada foothills, has become the most destructive wildfire in California’s history. By the evening of November 10, it had scorched 105,000 acres of land and killed 23 people, with more than 100 people still unaccounted for. [Quartz]
Several refineries that can process biomass and turn it into ethanol are built by companies such as Iogen, POET, and Abengoa, while other companies such as the Verenium Corporation, Novozymes, and Dyadic International[163] are producing enzymes which could enable future commercialization. The shift from food crop feedstocks to waste residues and native grasses offers significant opportunities for a range of players, from farmers to biotechnology firms, and from project developers to investors.[164]

Wind-to-rotor efficiency (including rotor blade friction and drag) are among the factors impacting the final price of wind power.[16] Further inefficiencies, such as gearbox losses, generator and converter losses, reduce the power delivered by a wind turbine. To protect components from undue wear, extracted power is held constant above the rated operating speed as theoretical power increases at the cube of wind speed, further reducing theoretical efficiency. In 2001, commercial utility-connected turbines deliver 75% to 80% of the Betz limit of power extractable from the wind, at rated operating speed.[17][18][needs update]

As of 2014, offshore wind power amounted to 8,771 megawatt of global installed capacity. Although offshore capacity doubled within three years (from 4,117 MW in 2011), it accounted for only 2.3% of the total wind power capacity. The United Kingdom is the undisputed leader of offshore power with half of the world's installed capacity ahead of Denmark, Germany, Belgium and China.
He was able to begin installation sooner than promised. The finished product looks great. The exterior industrial grade electrical work they did looks stylish. The workers kept a clean job site and fully cleaned up, leaving my place neater than before they began. The workers were knowledgeable and helpful. Other than wishing that it was free, I don't know what they could have done better. I give them my highest recommendation because of a job superbly done.... read more
Usually however, renewable energy is derived from the mains electricity grid. This means that energy storage is mostly not used, as the mains electricity grid is organised to produce the exact amount of energy being consumed at that particular moment. Energy production on the mains electricity grid is always set up as a combination of (large-scale) renewable energy plants, as well as other power plants as fossil-fuel power plants and nuclear power. This combination however, which is essential for this type of energy supply (as e.g. wind turbines, solar power plants etc.) can only produce when the wind blows and the sun shines. This is also one of the main drawbacks of the system as fossil fuel powerplants are polluting and are a main cause of global warming (nuclear power being an exception). Although fossil fuel power plants too can be made emissionless (through carbon capture and storage), as well as renewable (if the plants are converted to e.g. biomass) the best solution is still to phase out the latter power plants over time. Nuclear power plants too can be more or less eliminated from their problem of nuclear waste through the use of nuclear reprocessing and newer plants as fast breeder and nuclear fusion plants.
Green Energy Corp’s GreenBus® software interoperability platform enables the adoption of evolving Smart Grid technologies and integration with legacy power and communications infrastructures. Microgrid developers can now design and implement an architecture that supports advanced technology adoption over time, while realizing the business benefits incrementally.
High Temperature Geothermal energy is from thermal energy generated and stored in the Earth. Thermal energy is the energy that determines the temperature of matter. Earth's geothermal energy originates from the original formation of the planet and from radioactive decay of minerals (in currently uncertain[56] but possibly roughly equal[57] proportions). The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface. The adjective geothermal originates from the Greek roots geo, meaning earth, and thermos, meaning heat.
Today that initiative, the Green Climate Fund, is an “empty shell,” Mr. Ban said in a recent phone interview. The lifelong diplomat — who recently assumed the presidency of the Global Green Growth Institute, an international organization based in Seoul, South Korea, that focuses on clean energy development — said he hoped to use the next chapter of his career to help poor countries meet their goals under the Paris agreement on climate change.
My system has been installed for about a year now. When I first contracted with Envismart, the sales rep was very available and eager to help with my questions but after the installation, he was very hard to make contact with, seldom returned my calls, and when he did seemed to tell me what he thought I wanted hear and very seldom followed through. The system had a shaky start, it died after one day and after two new inverters and several optimizers over several months of on again, off again operation it seems to be running smoothly, at least for the last few months. Customer support was not very good, to be kind, but the service personnel that came out were prompt and there when they said they would be and very open about what the problems were and quickly fixed them. I was told my recurring system problems were a little unusual and I have to take their word on that but they gave me their personnel cell numbers and told me to call them when I couldn't get Customer Support to call - and when I called them, they came through and got me serviced a lot more quickly. They are the main reason I rated the company a 3.I have to say, the last month or so, it seems like the company is starting to work on changing its image. I have been called on several occasions by the "Quality Assurance" group at their initiation and asked if everything was OK with my system and I usually had an issue about something (admittedly, sometimes very minor). They always followed through with answers and corrected my concerns which was a big change from my previous experiences. I want to encourage them to continue improving their Customer Support after the sale in this manner as that is the real reputation for their company. I am still reserving my opinion but I am very much encouraged by their recent efforts - Keep it up!... read more
There is one more area where buyers may get a false sense of security: Several states in the US have lists of “approved” wind turbines for their rebate programs. An example of this is the California list. The problem is that approval for this list, and the performance data provided (such as rated power and energy production) are essentially self-certified. The less-scrupulous manufacturers can ‘manufacture’ data and submit it under the pretence that it was measured.  The only value of those lists is in telling you what rebates are available, they do not provide reliable turbine information.

There are two types of crystalline silicon, but it’s likely you’ll more often encounter monocrystalline silicon: it has a square-ish structure, and its high silicon content makes it more effective (and more expensive) than other panel materials. The other type of crystalline silicon, polycrystalline, is cheaper but less effective, so it’s used when there’s plenty of space (e.g., on a solar farm)—typically not on residential installs.
Geothermal power plants can operate 24 hours per day, providing base-load capacity, and the world potential capacity for geothermal power generation is estimated at 85 GW over the next 30 years. However, geothermal power is accessible only in limited areas of the world, including the United States, Central America, East Africa, Iceland, Indonesia, and the Philippines. The costs of geothermal energy have dropped substantially from the systems built in the 1970s.[10] Geothermal heat generation can be competitive in many countries producing geothermal power, or in other regions where the resource is of a lower temperature. Enhanced geothermal system (EGS) technology does not require natural convective hydrothermal resources, so it can be used in areas that were previously unsuitable for geothermal power, if the resource is very large. EGS is currently under research at the U.S. Department of Energy.
A 2014-published life-cycle analysis of land use for various sources of electricity concluded that the large-scale implementation of solar and wind potentially reduces pollution-related environmental impacts. The study found that the land-use footprint, given in square meter-years per megawatt-hour (m2a/MWh), was lowest for wind, natural gas and rooftop PV, with 0.26, 0.49 and 0.59, respectively, and followed by utility-scale solar PV with 7.9. For CSP, the footprint was 9 and 14, using parabolic troughs and solar towers, respectively. The largest footprint had coal-fired power plants with 18 m2a/MWh.[146]
Solar panels converts the sun's light in to usable solar energy using N-type and P-type semiconductor material.  When sunlight is absorbed by these materials, the solar energy knocks electrons loose from their atoms, allowing the electrons to flow through the material to produce electricity. This process of converting light (photons) to electricity (voltage) is called the photovoltaic (PV) effect.  Currently solar panels convert most of the visible light spectrum and about half of the ultraviolet and infrared light spectrum to usable solar energy.
The typical cost factors for solar power include the costs of the modules, the frame to hold them, wiring, inverters, labour cost, any land that might be required, the grid connection, maintenance and the solar insolation that location will receive. Adjusting for inflation, it cost $96 per watt for a solar module in the mid-1970s. Process improvements and a very large boost in production have brought that figure down to 68 cents per watt in February 2016, according to data from Bloomberg New Energy Finance.[69] Palo Alto California signed a wholesale purchase agreement in 2016 that secured solar power for 3.7 cents per kilowatt-hour. And in sunny Dubai large-scale solar generated electricity sold in 2016 for just 2.99 cents per kilowatt-hour – "competitive with any form of fossil-based electricity — and cheaper than most."[70]

Above this rated speed, the wind loads on the rotor blades will be approaching the maximum strength of the electrical machine, and the generator will be producing its maximum or rated power output as the rated wind speed window will have been reached. If the wind speed continues to increase, the wind turbine generator would stop at its cut-out point to prevent mechanical and electrical damage, resulting in zero electrical generation. The application of a brake to stop the generator for damaging itself can be either a mechanical governor or electrical speed sensor.
Biomass briquettes are increasingly being used in the developing world as an alternative to charcoal. The technique involves the conversion of almost any plant matter into compressed briquettes that typically have about 70% the calorific value of charcoal. There are relatively few examples of large-scale briquette production. One exception is in North Kivu, in eastern Democratic Republic of Congo, where forest clearance for charcoal production is considered to be the biggest threat to mountain gorilla habitat. The staff of Virunga National Park have successfully trained and equipped over 3500 people to produce biomass briquettes, thereby replacing charcoal produced illegally inside the national park, and creating significant employment for people living in extreme poverty in conflict-affected areas.[18]
“Volkswagen Converting Zwickau Automotive Plant to Produce Electric Vehicles” • In a move that it believes is the first of its kind in the world for a major car factory, VW is converting its auto factory in Zwickau, Germany from internal combustion vehicle production to manufacture of electric vehicles. The plant makes 330,000 cars per year. [CleanTechnica]
A: A residential solar PV system can cost anywhere from $25,000 to $35,000, on average. Because of the high cost, a power purchase agreement (PPA), loan, or lease are popular options for financing a solar PV system. Naturally, there are benefits and drawbacks with each option. We won’t cover them in detail here, but you can learn more in our article “Financing Options for Solar Power Explained.”
Using 100% renewable energy was first suggested in a Science paper published in 1975 by Danish physicist Bent Sørensen.[150] It was followed by several other proposals, until in 1998 the first detailed analysis of scenarios with very high shares of renewables were published. These were followed by the first detailed 100% scenarios. In 2006 a PhD thesis was published by Czisch in which it was shown that in a 100% renewable scenario energy supply could match demand in every hour of the year in Europe and North Africa. In the same year Danish Energy professor Henrik Lund published a first paper[151] in which he addresses the optimal combination of renewables, which was followed by several other papers on the transition to 100% renewable energy in Denmark. Since then Lund has been publishing several papers on 100% renewable energy. After 2009 publications began to rise steeply, covering 100% scenarios for countries in Europe, America, Australia and other parts of the world.[152]
Some people, including Greenpeace founder and first member Patrick Moore,[67][68][69] George Monbiot,[70] Bill Gates[71] and James Lovelock[72] have specifically classified nuclear power as green energy. Others, including Greenpeace's Phil Radford[73][74] disagree, claiming that the problems associated with radioactive waste and the risk of nuclear accidents (such as the Chernobyl disaster) pose an unacceptable risk to the environment and to humanity. However, newer nuclear reactor designs are capable of utilizing what is now deemed "nuclear waste" until it is no longer (or dramatically less) dangerous, and have design features that greatly minimize the possibility of a nuclear accident. These designs have yet to be commercialized. (See: Molten salt reactor)
One- to 10-kW turbines can be used in applications such as pumping water. Wind energy has been used for centuries to pump water and grind grain. Although mechanical windmills still provide a sensible, low-cost option for pumping water in low-wind areas, farmers and ranchers are finding that wind-electric pumping is more versatile and they can pump twice the volume for the same initial investment. In addition, mechanical windmills must be placed directly above the well, which may not take advantage of available wind resources. Wind-electric pumping systems can be placed where the wind resource is the best and connected to the pump motor with an electric cable. However, in areas with a low wind resource, mechanical windmills can provide more efficient water pumping.
Jump up ^ James, Paul; Magee, Liam; Scerri, Andy; Steger, Manfred B. (2015). Urban Sustainability in Theory and Practice:. London: Routledge.; Liam Magee; Andy Scerri; Paul James; Jaes A. Thom; Lin Padgham; Sarah Hickmott; Hepu Deng; Felicity Cahill (2013). "Reframing social sustainability reporting: Towards an engaged approach". Environment, Development and Sustainability. Springer.
The most common type of residential solar is called solar PV. The PV stands for “photovoltaic,” and a solar PV system is a electrical system that consists of solar panels, an inverter, a meter, and a few other components (mounting, cabling, etc.). A solar PV system requires little to no maintenance for years, and if you’re in a place with the right amount of sunlight, you can end up saving money, while also going green.
Based on REN21's 2017 report, renewables contributed 19.3% to humans' global energy consumption and 24.5% to their generation of electricity in 2015 and 2016, respectively. This energy consumption is divided as 8.9% coming from traditional biomass, 4.2% as heat energy (modern biomass, geothermal and solar heat), 3.9% hydro electricity and 2.2% is electricity from wind, solar, geothermal, and biomass. Worldwide investments in renewable technologies amounted to more than US$286 billion in 2015, with countries such as China and the United States heavily investing in wind, hydro, solar and biofuels.[5] Globally, there are an estimated 7.7 million jobs associated with the renewable energy industries, with solar photovoltaics being the largest renewable employer.[6] As of 2015 worldwide, more than half of all new electricity capacity installed was renewable.[7]
How accurate are these numbers? This is the energy production a good horizontal-axis wind turbine can reach, if installed at the perfect site and height. These are the upper limit though, if your turbine produces anywhere near the number predicted by this table you should be doing your happy-dance! Most small wind turbine installations underperform significantly, in fact, the average seems to be about half of the predicted energy production (and many do not even reach that). There can be many reasons for the performance shortfall; poor site selection,  with more turbulent air than expected often has much to do with it. The reports in the ‘real world’ section following below illustrate this point. Many small wind turbines do not reach 30% overall efficiency, some are close to 0% (this is no joke!), so these numbers have only one direction to go. For off-grid battery charging wind turbines you should deduct 20 – 30% of the predicted numbers, due to the lower efficiency of a turbine tied to batteries, and the losses involved in charging batteries.
The picture the company is using to sell this on Amazon is not of the turbine they are selling, but a picture of the best-selling South-West Windpower Air X turbine and I bought this item believing it to be this turbine. I also have one of these turbines which has run faultlessly now for 7 years. I am very disappointed with the Sunforce and often feel like throwing into the sea! It's a piece of junk!!

My system has been installed for about a year now. When I first contracted with Envismart, the sales rep was very available and eager to help with my questions but after the installation, he was very hard to make contact with, seldom returned my calls, and when he did seemed to tell me what he thought I wanted hear and very seldom followed through. The system had a shaky start, it died after one day and after two new inverters and several optimizers over several months of on again, off again operation it seems to be running smoothly, at least for the last few months. Customer support was not very good, to be kind, but the service personnel that came out were prompt and there when they said they would be and very open about what the problems were and quickly fixed them. I was told my recurring system problems were a little unusual and I have to take their word on that but they gave me their personnel cell numbers and told me to call them when I couldn't get Customer Support to call - and when I called them, they came through and got me serviced a lot more quickly. They are the main reason I rated the company a 3.I have to say, the last month or so, it seems like the company is starting to work on changing its image. I have been called on several occasions by the "Quality Assurance" group at their initiation and asked if everything was OK with my system and I usually had an issue about something (admittedly, sometimes very minor). They always followed through with answers and corrected my concerns which was a big change from my previous experiences. I want to encourage them to continue improving their Customer Support after the sale in this manner as that is the real reputation for their company. I am still reserving my opinion but I am very much encouraged by their recent efforts - Keep it up!... read more
Japan and China have national programs aimed at commercial scale Space-Based Solar Power (SBSP). The China Academy of Space Technology (CAST) won the 2015 International SunSat Design Competition with this video of their Multi-Rotary Joint design. Proponents of SBSP claim that Space-Based Solar Power would be clean, constant, and global, and could scale to meet all planetary energy demand.[56] A recent multi-agency industry proposal (echoing the 2008 Pentagon recommendation) won the SECDEF/SECSTATE/USAID Director D3 (Diplomacy, Development, Defense) Innovation Challenge.[57]
Some of the second-generation renewables, such as wind power, have high potential and have already realised relatively low production costs. At the end of 2008, worldwide wind farm capacity was 120,791 megawatts (MW), representing an increase of 28.8 percent during the year,[30] and wind power produced some 1.3% of global electricity consumption.[31] Wind power accounts for approximately 20% of electricity use in Denmark, 9% in Spain, and 7% in Germany.[32][33] However, it may be difficult to site wind turbines in some areas for aesthetic or environmental reasons, and it may be difficult to integrate wind power into electricity grids in some cases.[10]
Nuclear power. After coal, the next largest source of our electricity is nuclear power. While nuclear plants don't cause air pollution, they do create radioactive waste, which must be stored for thousands of years. As accidents at Three Mile Island and Chernobyl proved, nuclear plants also carry the risk of catastrophic failure. And nuclear power can be very expensive.

Thirty years ago Bergey pioneered the radically-simple “Bergey design” that has proven to provide the best reliability, performance, service life, and value of all of the hundreds of competitive products that have come and gone in that time. With only three moving parts and no scheduled maintenance necessary, the Bergey 10 kW has compiled a service record that no other wind turbine can match. We back it up with the longest warranty in the industry.
Concentrating solar power plants with wet-cooling systems, on the other hand, have the highest water-consumption intensities of any conventional type of electric power plant; only fossil-fuel plants with carbon-capture and storage may have higher water intensities.[135] A 2013 study comparing various sources of electricity found that the median water consumption during operations of concentrating solar power plants with wet cooling was 810 ga/MWhr for power tower plants and 890 gal/MWhr for trough plants. This was higher than the operational water consumption (with cooling towers) for nuclear (720 gal/MWhr), coal (530 gal/MWhr), or natural gas (210).[134] A 2011 study by the National Renewable Energy Laboratory came to similar conclusions: for power plants with cooling towers, water consumption during operations was 865 gal/MWhr for CSP trough, 786 gal/MWhr for CSP tower, 687 gal/MWhr for coal, 672 gal/MWhr for nuclear, and 198 gal/MWhr for natural gas.[136] The Solar Energy Industries Association noted that the Nevada Solar One trough CSP plant consumes 850 gal/MWhr.[137] The issue of water consumption is heightened because CSP plants are often located in arid environments where water is scarce.
By Ellen Coleman—As an American of non-specific cultural identity, I look with envy at families with strong cultural tradition. I wonder who "my people” are. What family traditions will my children (now grown) want to pass on to their own children?  Their exposure has been such a mixed bag of “ritual”—making tamales for Thanksgiving, potstickers for family reunions, fried eggplant for Fourth of July.  What will be their choice of comfort music?  What kinds of homes will they make, what spiritual paths will they take?
A solar power tower uses an array of tracking reflectors (heliostats) to concentrate light on a central receiver atop a tower. Power towers can achieve higher (thermal-to-electricity conversion) efficiency than linear tracking CSP schemes and better energy storage capability than dish stirling technologies.[14] The PS10 Solar Power Plant and PS20 solar power plant are examples of this technology.
×