Common battery technologies used in today's home PV systems include, the valve regulated lead-acid battery– a modified version of the conventional lead–acid battery, nickel–cadmium and lithium-ion batteries. Lead-acid batteries are currently the predominant technology used in small-scale, residential PV systems, due to their high reliability, low self discharge and investment and maintenance costs, despite shorter lifetime and lower energy density. However, lithium-ion batteries have the potential to replace lead-acid batteries in the near future, as they are being intensively developed and lower prices are expected due to economies of scale provided by large production facilities such as the Gigafactory 1. In addition, the Li-ion batteries of plug-in electric cars may serve as a future storage devices in a vehicle-to-grid system. Since most vehicles are parked an average of 95 percent of the time, their batteries could be used to let electricity flow from the car to the power lines and back. Other rechargeable batteries used for distributed PV systems include, sodium–sulfur and vanadium redox batteries, two prominent types of a molten salt and a flow battery, respectively.[114][115][116]
Biomass briquettes are increasingly being used in the developing world as an alternative to charcoal. The technique involves the conversion of almost any plant matter into compressed briquettes that typically have about 70% the calorific value of charcoal. There are relatively few examples of large-scale briquette production. One exception is in North Kivu, in eastern Democratic Republic of Congo, where forest clearance for charcoal production is considered to be the biggest threat to mountain gorilla habitat. The staff of Virunga National Park have successfully trained and equipped over 3500 people to produce biomass briquettes, thereby replacing charcoal produced illegally inside the national park, and creating significant employment for people living in extreme poverty in conflict-affected areas.[18]
For a decade now, we’ve stopped this project in its tracks. Thousands of us have shown up at public hearings, tens of thousand of us have marched in the streets, hundreds of thousands of us have taken action. We’ve made phone calls, we’ve rallied at the white house, we’ve organized, worked in solidarity with the tribes and now, a talented group of pro-environment lawyers have held the Trump administration accountable in court. 
Eight solar panels and one measly little wind generator supplied all the power we used. We bolted the pole that supported the wind generator to a wall of our house, which, sound-wise, turned the roof of the house into one big drumhead.  Oops! Live and learn. And when the wind REALLY blew—which was often—the thing broke. The manufacturer replaced the main unit several times before we gave up on wind power.

Plant energy is produced by crops specifically grown for use as fuel that offer high biomass output per hectare with low input energy. Some examples of these plants are wheat, which typically yield 7.5–8 tonnes of grain per hectare, and straw, which typically yield 3.5–5 tonnes per hectare in the UK.[68] The grain can be used for liquid transportation fuels while the straw can be burned to produce heat or electricity. Plant biomass can also be degraded from cellulose to glucose through a series of chemical treatments, and the resulting sugar can then be used as a first generation biofuel.

Turbines used in wind farms for commercial production of electric power are usually three-bladed. These have low torque ripple, which contributes to good reliability. The blades are usually colored white for daytime visibility by aircraft and range in length from 20 to 80 meters (66 to 262 ft). The size and height of turbines increase year by year. Offshore wind turbines are built up to 8(MW) today and have a blade length up to 80 meters (260 ft). Usual tubular steel towers of multi megawatt turbines have a height of 70 m to 120 m and in extremes up to 160 m.


Green energy, however, utilizes energy sources that are readily available all over the world, including in rural and remote areas that don't otherwise have access to electricity. Advances in renewable energy technologies have lowered the cost of solar panels, wind turbines and other sources of green energy, placing the ability to produce electricity in the hands of the people rather than those of oil, gas, coal and utility companies.

Biomass, biogas and biofuels are burned to produce heat/power and in doing so harm the environment. Pollutants such as sulphurous oxides (SOx), nitrous oxides (NOx), and particulate matter (PM) are produced from this combustion; the World Health Organisation estimates that 7 million premature deaths are caused each year by air pollution.[102] Biomass combustion is a major contributor.[102][103][104]
There have been "not in my back yard" (NIMBY) concerns relating to the visual and other impacts of some wind farms, with local residents sometimes fighting or blocking construction.[192] In the United States, the Massachusetts Cape Wind project was delayed for years partly because of aesthetic concerns. However, residents in other areas have been more positive. According to a town councilor, the overwhelming majority of locals believe that the Ardrossan Wind Farm in Scotland has enhanced the area.[193]

The blades for the wind generator are repurposed from a vehicle fan clutch. To attach the blades to the alternator, you can weld the fan clutch hub directly to the alternator hub — just make certain the fan is perfectly in line with the alternator shaft. Also, make sure the alternator’s built-in wire plug-ins are located on what will be the bottom of the generator. If you don’t have access to a welder, you can connect the fan clutch to the alternator using the following materials:
One- to 10-kW turbines can be used in applications such as pumping water. Wind energy has been used for centuries to pump water and grind grain. Although mechanical windmills still provide a sensible, low-cost option for pumping water in low-wind areas, farmers and ranchers are finding that wind-electric pumping is more versatile and they can pump twice the volume for the same initial investment. In addition, mechanical windmills must be placed directly above the well, which may not take advantage of available wind resources. Wind-electric pumping systems can be placed where the wind resource is the best and connected to the pump motor with an electric cable. However, in areas with a low wind resource, mechanical windmills can provide more efficient water pumping.
A 2014-published life-cycle analysis of land use for various sources of electricity concluded that the large-scale implementation of solar and wind potentially reduces pollution-related environmental impacts. The study found that the land-use footprint, given in square meter-years per megawatt-hour (m2a/MWh), was lowest for wind, natural gas and rooftop PV, with 0.26, 0.49 and 0.59, respectively, and followed by utility-scale solar PV with 7.9. For CSP, the footprint was 9 and 14, using parabolic troughs and solar towers, respectively. The largest footprint had coal-fired power plants with 18 m2a/MWh.[146]
The locations with highest annual solar irradiance lie in the arid tropics and subtropics. Deserts lying in low latitudes usually have few clouds, and can receive sunshine for more than ten hours a day.[86][87] These hot deserts form the Global Sun Belt circling the world. This belt consists of extensive swathes of land in Northern Africa, Southern Africa, Southwest Asia, Middle East, and Australia, as well as the much smaller deserts of North and South America.[88] Africa's eastern Sahara Desert, also known as the Libyan Desert, has been observed to be the sunniest place on Earth according to NASA.[89][90]

The typical cost factors for solar power include the costs of the modules, the frame to hold them, wiring, inverters, labour cost, any land that might be required, the grid connection, maintenance and the solar insolation that location will receive. Adjusting for inflation, it cost $96 per watt for a solar module in the mid-1970s. Process improvements and a very large boost in production have brought that figure down to 68 cents per watt in February 2016, according to data from Bloomberg New Energy Finance.[69] Palo Alto California signed a wholesale purchase agreement in 2016 that secured solar power for 3.7 cents per kilowatt-hour. And in sunny Dubai large-scale solar generated electricity sold in 2016 for just 2.99 cents per kilowatt-hour – "competitive with any form of fossil-based electricity — and cheaper than most."[70]

A typical house usually requires a home wind turbine with a 5 kW generating capacity to meet all its energy requirements. A turbine that offers this much power would have to be around 13 to 18 feet in diameter and positioned in an area where strong winds often pass through. There are also plenty of smaller, cheaper turbines, but these variants produce less power and are less reliable than their more expensive counterparts.
The tables above are for HAWTs, the regular horizontal “wind mill” type we are all familiar with. For VAWTs the tables can be used as well, but you have to convert their dimensions. Calculate the frontal area (swept area) of the VAWT by multiplying height and width, or for a curved egg-beater approximate the area. Now convert the surface area to a diameter, as if it were a circle: Diameter = √(4 • Area / Pi). That will give you a diameter for the table. Look up the energy production for that diameter and your average annual wind speed and do the following:

Since we mentioned maintenance: Consider that in a reasonably windy place a wind turbine can run 7000 hours or more per year. If it were a car, going at 50 km/h (30 mph), it would travel 350,000 km (or 200,000+ miles). That means you should plan for an annual inspection, and perform the needed maintenance (greasing for example), regardless of the recommendation of the manufacturer. It is just as important to inspect and maintain the tower annually. We know of a tower that collapsed because nuts worked themselves loose from their bolts over 2½ years time, no inspection nor maintenance were done during that time, ultimately leading to its undoing. Wind turbines and towers live in a very harsh environment. It is important to check for issues, such as loose bolts or tower guy wires that need re-tensioning, before they become a problem.

Smart grid refers to a class of technology people are using to bring utility electricity delivery systems into the 21st century, using computer-based remote control and automation.[65] These systems are made possible by two-way communication technology and computer processing that has been used for decades in other industries. They are beginning to be used on electricity networks, from the power plants and wind farms all the way to the consumers of electricity in homes and businesses. They offer many benefits to utilities and consumers—mostly seen in big improvements in energy efficiency on the electricity grid and in the energy users’ homes and offices.[65]
"Eggbeater" turbines, or Darrieus turbines, were named after the French inventor, Georges Darrieus.[31] They have good efficiency, but produce large torque ripple and cyclical stress on the tower, which contributes to poor reliability. They also generally require some external power source, or an additional Savonius rotor to start turning, because the starting torque is very low. The torque ripple is reduced by using three or more blades which results in greater solidity of the rotor. Solidity is measured by blade area divided by the rotor area. Newer Darrieus type turbines are not held up by guy-wires but have an external superstructure connected to the top bearing.[32]

There are potentially two sources of nuclear power. Fission is used in all current nuclear power plants. Fusion is the reaction that exists in stars, including the sun, and remains impractical for use on Earth, as fusion reactors are not yet available. However nuclear power is controversial politically and scientifically due to concerns about radioactive waste disposal, safety, the risks of a severe accident, and technical and economical problems in dismantling of old power plants.[120]

A good match between generation and consumption is key for high self consumption, and should be considered when deciding where to install solar power and how to dimension the installation. The match can be improved with batteries or controllable electricity consumption.[94] However, batteries are expensive and profitability may require provision of other services from them besides self consumption increase.[95] Hot water storage tanks with electric heating with heat pumps or resistance heaters can provide low-cost storage for self consumption of solar power.[94] Shiftable loads, such as dishwashers, tumble dryers and washing machines, can provide controllable consumption with only a limited effect on the users, but their effect on self consumption of solar power may be limited.[94]
Above this rated speed, the wind loads on the rotor blades will be approaching the maximum strength of the electrical machine, and the generator will be producing its maximum or rated power output as the rated wind speed window will have been reached. If the wind speed continues to increase, the wind turbine generator would stop at its cut-out point to prevent mechanical and electrical damage, resulting in zero electrical generation. The application of a brake to stop the generator for damaging itself can be either a mechanical governor or electrical speed sensor.
The US National Renewable Energy Laboratory (NREL), in harmonizing the disparate estimates of life-cycle GHG emissions for solar PV, found that the most critical parameter was the solar insolation of the site: GHG emissions factors for PV solar are inversely proportional to insolation.[125] For a site with insolation of 1700 kWh/m2/year, typical of southern Europe, NREL researchers estimated GHG emissions of 45 gCO2e/kWh. Using the same assumptions, at Phoenix, USA, with insolation of 2400 kWh/m2/year, the GHG emissions factor would be reduced to 32 g of CO2e/kWh.[126]
A good match between generation and consumption is key for high self consumption, and should be considered when deciding where to install solar power and how to dimension the installation. The match can be improved with batteries or controllable electricity consumption.[94] However, batteries are expensive and profitability may require provision of other services from them besides self consumption increase.[95] Hot water storage tanks with electric heating with heat pumps or resistance heaters can provide low-cost storage for self consumption of solar power.[94] Shiftable loads, such as dishwashers, tumble dryers and washing machines, can provide controllable consumption with only a limited effect on the users, but their effect on self consumption of solar power may be limited.[94]

The journal, Renewable Energy, seeks to promote and disseminate knowledge on the various topics and technologies of renewable energy systems and components. The journal aims to serve researchers, engineers, economists, manufacturers, NGOs, associations and societies to help them keep abreast of new developments in their specialist fields and to apply alternative energy solutions to current practices.


There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of sustainable energy. This research spans several areas of focus across the sustainable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[94] Multiple federally supported research organizations have focused on sustainable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners.[95] Sandia has a total budget of $2.4 billion [96] while NREL has a budget of $375 million.[97]

Moving towards energy sustainability will require changes not only in the way energy is supplied, but in the way it is used, and reducing the amount of energy required to deliver various goods or services is essential. Opportunities for improvement on the demand side of the energy equation are as rich and diverse as those on the supply side, and often offer significant economic benefits.[60]
The waste we generate ends up in landfills, where it decomposes and produces landfill gas made of approximately 50 percent methane. This gas can be captured and used to fuel electric generators. Since large landfills must burn off this gas to reduce the hazards arising from gas buildup, this method of renewable energy is one of the most successful.
In 2004, the German government introduced the first large-scale feed-in tariff system, under the German Renewable Energy Act, which resulted in explosive growth of PV installations in Germany. At the outset the FIT was over 3x the retail price or 8x the industrial price. The principle behind the German system is a 20-year flat rate contract. The value of new contracts is programmed to decrease each year, in order to encourage the industry to pass on lower costs to the end users. The programme has been more successful than expected with over 1GW installed in 2006, and political pressure is mounting to decrease the tariff to lessen the future burden on consumers.
Wind-to-rotor efficiency (including rotor blade friction and drag) are among the factors impacting the final price of wind power.[16] Further inefficiencies, such as gearbox losses, generator and converter losses, reduce the power delivered by a wind turbine. To protect components from undue wear, extracted power is held constant above the rated operating speed as theoretical power increases at the cube of wind speed, further reducing theoretical efficiency. In 2001, commercial utility-connected turbines deliver 75% to 80% of the Betz limit of power extractable from the wind, at rated operating speed.[17][18][needs update]
Thermal storage technologies allow heat or cold to be stored for periods of time ranging from hours or overnight to interseasonal, and can involve storage of sensible energy (i.e. by changing the temperature of a medium) or latent energy (i.e. through phase changes of a medium, such between water and slush or ice). Short-term thermal storages can be used for peak-shaving in district heating or electrical distribution systems. Kinds of renewable or alternative energy sources that can be enabled include natural energy (e.g. collected via solar-thermal collectors, or dry cooling towers used to collect winter's cold), waste energy (e.g. from HVAC equipment, industrial processes or power plants), or surplus energy (e.g. as seasonally from hydropower projects or intermittently from wind farms). The Drake Landing Solar Community (Alberta, Canada) is illustrative. borehole thermal energy storage allows the community to get 97% of its year-round heat from solar collectors on the garage roofs, which most of the heat collected in summer.[58][59] Types of storages for sensible energy include insulated tanks, borehole clusters in substrates ranging from gravel to bedrock, deep aquifers, or shallow lined pits that are insulated on top. Some types of storage are capable of storing heat or cold between opposing seasons (particularly if very large), and some storage applications require inclusion of a heat pump. Latent heat is typically stored in ice tanks or what are called phase-change materials (PCMs).

America is embracing renewables, slowly. In 2016, Massachusetts passed a law promoting a huge investment in wind and hydropower; the first megawatt is expected to hit the grid in 2020. Early this year New York State announced plans to spend 12 years building the infrastructure for a $6 billion offshore wind power industry. Hawaii has pledged to be powered entirely by renewable energy—in 2045. Atlanta’s goal is 2035 and San Francisco’s is 2030. Typically, plans to convert to sustainable energy stretch on for decades.

There is no energy in the wind at those wind speeds, nothing to harvest for the turbine. While it may make you feel good to see your expensive yard toy spin, it is not doing anything meaningful in a breeze like that: To give you some idea, a wind turbine with a diameter of 6 meters (pretty large as small wind turbines go) can realistically produce just 120 Watt at 3.5 m/s wind speed. That same turbine would be rated at 6 kW (or more, see the next section), so energy production at cut-in really is just a drop in the bucket. What is more, due to the way grid-tie inverters work, you are about as likely to be loosing energy around cut-in wind speed to keep the inverter powered, as you are in making any energy, resulting in a net-loss of electricity production.


As competition in the wind market increases, companies are seeking ways to draw greater efficiency from their designs. One of the predominant ways wind turbines have gained performance is by increasing rotor diameters, and thus blade length. Retrofitting current turbines with larger blades mitigates the need and risks associated with a system-level redesign. As the size of the blade increases, its tendency to deflect also increases. Thus, from a materials perspective, the stiffness-to-weight is of major importance. As the blades need to function over a 100 million load cycles over a period of 20–25 years, the fatigue life of the blade materials is also of utmost importance. By incorporating carbon fiber into parts of existing blade systems, manufacturers may increase the length of the blades without increasing their overall weight. For instance, the spar cap, a structural element of a turbine blade, commonly experiences high tensile loading, making it an ideal candidate to utilize the enhanced tensile properties of carbon fiber in comparison to glass fiber.[47] Higher stiffness and lower density translates to thinner, lighter blades offering equivalent performance. In a 10 (MW) turbine—which will become more common in offshore systems by 2021—blades may reach over 100 m in length and weigh up to 50 metric tons when fabricated out of glass fiber. A switch to carbon fiber in the structural spar of the blade yields weight savings of 20 to 30 percent, or approximately 15 metric tons.[48]
UN Conference on the Human Environment (Stockholm 1972) Brundtlandt Commission Report (1983) Our Common Future (1987) Earth Summit (1992) Rio Declaration on Environment and Development Agenda 21 (1992) Convention on Biological Diversity (1992) ICPD Programme of Action (1994) Earth Charter Lisbon Principles UN Millennium Declaration (2000) Earth Summit 2002 (Rio+10, Johannesburg) United Nations Conference on Sustainable Development (Rio+20, 2012) Sustainable Development Goals

“California Looks to Stationary Energy Storage as a Solution to Peaker Plants” • Central California electric utility Pacific Gas & Electric is planning to replace three old natural gas power plants in its network with stationary energy storage installations from Tesla. California is looking to add 1.3 GW of storage to its power grid by 2020. [CleanTechnica]
Over $1 billion of federal money has been spent on the research and development of hydrogen and a medium for energy storage in the United States.[150] Both the National Renewable Energy Laboratory[151] and Sandia National Laboratories[152] have departments dedicated to hydrogen research. Hydrogen is useful for energy storage, and for use in airplanes and ships, but is not practical for automobile use, as it is not very efficient, compared to using a battery — for the same cost a person can travel three times as far using a battery electric vehicle.[153]
Solar power is produced by collecting sunlight and converting it into electricity. This is done by using solar panels, which are large flat panels made up of many individual solar cells. It is most often used in remote locations, although it is becoming more popular in urban areas as well. This page contains articles that explore advances in solar energy technology.
At GE, product evolution is at our core, and we are continuously working to develop the next generation of wind energy. Beginning in 2002 with one wind turbine model, we now offer a full suite of turbines created for a variety of wind environments. We offer increased value to customers with proven performance, reliability, and availability. Our portfolio of turbines feature rated capacities from 1.7 MW to 5.3 MW (Onshore) and 6 MW to 12 MW (Offshore), we are uniquely suited to meet the needs of a broad range of wind regimes. 
Renewable energy is derived from natural processes that are replenished constantly. In its various forms, it derives directly from the sun, or from heat generated deep within the earth. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and biofuels and hydrogen derived from renewable resources.
With advanced technology being developed, cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the United States and in Brazil. The energy costs for producing bio-ethanol are almost equal to, the energy yields from bio-ethanol. However, according to the European Environment Agency, biofuels do not address global warming concerns.[75] Biodiesel is made from vegetable oils, animal fats or recycled greases. It can be used as a fuel for vehicles in its pure form, or more commonly as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe. Biofuels provided 2.7% of the world's transport fuel in 2010.[76]
Our latest innovation in the Industrial Internet era, The Digital Wind Farm, is making our turbines smarter and more connected than ever before. A dynamic, connected and adaptable wind energy ecosystem, the Digital Wind Farm pairs our newest turbines with a digital infrastructure, allowing customers to connect, monitor, predict and optimize unit and site performance.
Solar power panels that use nanotechnology, which can create circuits out of individual silicon molecules, may cost half as much as traditional photovoltaic cells, according to executives and investors involved in developing the products. Nanosolar has secured more than $100 million from investors to build a factory for nanotechnology thin-film solar panels. The company's plant has a planned production capacity of 430 megawatts peak power of solar cells per year. Commercial production started and first panels have been shipped[50] to customers in late 2007.[51]
In a twist that has some Republicans in this oil- and gas-rich state whistling Dixie, Ross is now friends with Al Gore, who featured Ross in An Inconvenient Sequel, the 2017 follow-up to An Inconvenient Truth, his Oscar-winning documentary about global warming. “We bonded right away,” Ross recalls. “I said, ‘Mr. Vice President, we’ve got a lot in common. You invented the internet. I invented green energy.’” Trained as an accountant, Ross still works as one—being mayor of Georgetown is a part-time job—and there’s no mistaking his zeal for the other kind of green. When conservatives complain about his energy politics, he is quick to remind them that the city has the lowest effective tax rate in Central Texas.
Wind turbines need wind to produce energy. That message seems lost, not only on most small wind turbine owners, but also on many manufacturers and installers of said devices. One of the world’s largest manufacturers of small wind turbines, located in the USA (now bankrupt by the way, though their turbines are still sold), markets their flag-ship machine with a 12 meter (36 feet) tower. Their dealers are trained to tell you it will produce 60% of your electricity bill. If you are one of those that is convinced the earth is flat, this is the turbine for you!
In the United States, one of the main problems with purchasing green energy through the electrical grid is the current centralized infrastructure that supplies the consumer’s electricity. This infrastructure has led to increasingly frequent brown outs and black outs, high CO2 emissions, higher energy costs, and power quality issues.[89] An additional $450 billion will be invested to expand this fledgling system over the next 20 years to meet increasing demand.[90] In addition, this centralized system is now being further overtaxed with the incorporation of renewable energies such as wind, solar, and geothermal energies. Renewable resources, due to the amount of space they require, are often located in remote areas where there is a lower energy demand. The current infrastructure would make transporting this energy to high demand areas, such as urban centers, highly inefficient and in some cases impossible. In addition, despite the amount of renewable energy produced or the economic viability of such technologies only about 20 percent will be able to be incorporated into the grid. To have a more sustainable energy profile, the United States must move towards implementing changes to the electrical grid that will accommodate a mixed-fuel economy.[91]
There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of sustainable energy. This research spans several areas of focus across the sustainable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[94] Multiple federally supported research organizations have focused on sustainable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners.[95] Sandia has a total budget of $2.4 billion [96] while NREL has a budget of $375 million.[97]
This discussion is mainly about factory-made grid-tie wind turbines. The off-grid crowd has an entirely different set of decisions and goals. The main ones are that for off-grid use economic viability in comparison with the electrical grid is not an issue, and a wind turbine can make up for the loss of sunlight (and PV electricity) in the winter months. For the DIY group there are several good turbine designs available; Hugh Piggott and the two Dans have written books that outline this step-by-step. Building your own turbine can be a great hobby, and some of the topics touched below apply (such as proper site selection), but this discussion is not about those. The decisions involved in making your own turbine, and the cost basis, have little overlap with a the process of having an installer put a factory-made turbine in your backyard.
A 2014-published life-cycle analysis of land use for various sources of electricity concluded that the large-scale implementation of solar and wind potentially reduces pollution-related environmental impacts. The study found that the land-use footprint, given in square meter-years per megawatt-hour (m2a/MWh), was lowest for wind, natural gas and rooftop PV, with 0.26, 0.49 and 0.59, respectively, and followed by utility-scale solar PV with 7.9. For CSP, the footprint was 9 and 14, using parabolic troughs and solar towers, respectively. The largest footprint had coal-fired power plants with 18 m2a/MWh.[146]
All electrical turbine generators work because of the effects of moving a magnetic field past an electrical coil. When electrons flow through an electrical coil, a magnetic field is created around it. Likewise, when a magnetic field moves past a coil of wire, a voltage is induced in the coil as defined by Faraday’s law of magnetic induction causing electrons to flow.
How accurate are these numbers? This is the energy production a good horizontal-axis wind turbine can reach, if installed at the perfect site and height. These are the upper limit though, if your turbine produces anywhere near the number predicted by this table you should be doing your happy-dance! Most small wind turbine installations underperform significantly, in fact, the average seems to be about half of the predicted energy production (and many do not even reach that). There can be many reasons for the performance shortfall; poor site selection,  with more turbulent air than expected often has much to do with it. The reports in the ‘real world’ section following below illustrate this point. Many small wind turbines do not reach 30% overall efficiency, some are close to 0% (this is no joke!), so these numbers have only one direction to go. For off-grid battery charging wind turbines you should deduct 20 – 30% of the predicted numbers, due to the lower efficiency of a turbine tied to batteries, and the losses involved in charging batteries.
Above this rated speed, the wind loads on the rotor blades will be approaching the maximum strength of the electrical machine, and the generator will be producing its maximum or rated power output as the rated wind speed window will have been reached. If the wind speed continues to increase, the wind turbine generator would stop at its cut-out point to prevent mechanical and electrical damage, resulting in zero electrical generation. The application of a brake to stop the generator for damaging itself can be either a mechanical governor or electrical speed sensor.
If you regularly find your lawn furniture blown over, or have to collect it from the neighbour’s yard, your house needs to be repainted every year or two because it constantly gets sand-blasted, and where the trees have funny shapes (and not because your power company has been doing the pruning), that is when you know you live in a windy place where a wind turbine is likely to make economic sense.
My system has been installed for about a year now. When I first contracted with Envismart, the sales rep was very available and eager to help with my questions but after the installation, he was very hard to make contact with, seldom returned my calls, and when he did seemed to tell me what he thought I wanted hear and very seldom followed through. The system had a shaky start, it died after one day and after two new inverters and several optimizers over several months of on again, off again operation it seems to be running smoothly, at least for the last few months. Customer support was not very good, to be kind, but the service personnel that came out were prompt and there when they said they would be and very open about what the problems were and quickly fixed them. I was told my recurring system problems were a little unusual and I have to take their word on that but they gave me their personnel cell numbers and told me to call them when I couldn't get Customer Support to call - and when I called them, they came through and got me serviced a lot more quickly. They are the main reason I rated the company a 3.I have to say, the last month or so, it seems like the company is starting to work on changing its image. I have been called on several occasions by the "Quality Assurance" group at their initiation and asked if everything was OK with my system and I usually had an issue about something (admittedly, sometimes very minor). They always followed through with answers and corrected my concerns which was a big change from my previous experiences. I want to encourage them to continue improving their Customer Support after the sale in this manner as that is the real reputation for their company. I am still reserving my opinion but I am very much encouraged by their recent efforts - Keep it up!... read more
Other renewable energy technologies are still under development, and include cellulosic ethanol, hot-dry-rock geothermal power, and marine energy.[156] These technologies are not yet widely demonstrated or have limited commercialization. Many are on the horizon and may have potential comparable to other renewable energy technologies, but still depend on attracting sufficient attention and research, development and demonstration (RD&D) funding.[156]
Prior to the development of coal in the mid 19th century, nearly all energy used was renewable. Almost without a doubt the oldest known use of renewable energy, in the form of traditional biomass to fuel fires, dates from 790,000 years ago. Use of biomass for fire did not become commonplace until many hundreds of thousands of years later, sometime between 200,000 and 400,000 years ago.[31] Probably the second oldest usage of renewable energy is harnessing the wind in order to drive ships over water. This practice can be traced back some 7000 years, to ships in the Persian Gulf[32] and on the Nile.[33] Moving into the time of recorded history, the primary sources of traditional renewable energy were human labor, animal power, water power, wind, in grain crushing windmills,[32] and firewood, a traditional biomass. A graph of energy use in the United States up until 1900 shows oil and natural gas with about the same importance in 1900 as wind and solar played in 2010.
Climate change and global warming concerns, coupled with high oil prices, peak oil, and increasing government support, are driving increasing renewable energy legislation, incentives and commercialization.[10] New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors.[24] According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment.[25]

These residential renewable energy plans are sourced from 100% wind power generation. In addition, a Green Power plan lets you lock in a secure, fixed energy rate with the same key benefits as Champion Energy’s traditional electricity plans. This is an ideal choice for customers looking for ways to preserve the environment, conserve natural resources and promote the growth of renewable energy infrastructure.
Some of the second-generation renewables, such as wind power, have high potential and have already realised relatively low production costs. At the end of 2008, worldwide wind farm capacity was 120,791 megawatts (MW), representing an increase of 28.8 percent during the year,[30] and wind power produced some 1.3% of global electricity consumption.[31] Wind power accounts for approximately 20% of electricity use in Denmark, 9% in Spain, and 7% in Germany.[32][33] However, it may be difficult to site wind turbines in some areas for aesthetic or environmental reasons, and it may be difficult to integrate wind power into electricity grids in some cases.[10]
Nuclear power. After coal, the next largest source of our electricity is nuclear power. While nuclear plants don't cause air pollution, they do create radioactive waste, which must be stored for thousands of years. As accidents at Three Mile Island and Chernobyl proved, nuclear plants also carry the risk of catastrophic failure. And nuclear power can be very expensive.

A wide range of concentrating technologies exists: among the best known are the parabolic trough, the compact linear Fresnel reflector, the Stirling dish and the solar power tower. Various techniques are used to track the sun and focus light. In all of these systems a working fluid is heated by the concentrated sunlight, and is then used for power generation or energy storage.[11] Thermal storage efficiently allows up to 24-hour electricity generation.[12]

×