As local wind speed increases, so does the power output. Since this type of generator uses wind as 'fuel', it is important to choose an appropriate site for mounting the turbine. The ideal location for a wind generator is 20 feet above any surrounding object within a 250-foot radius. Wind speed increases with height above ground, so a taller mast can provide significant gains in energy production.

Today that initiative, the Green Climate Fund, is an “empty shell,” Mr. Ban said in a recent phone interview. The lifelong diplomat — who recently assumed the presidency of the Global Green Growth Institute, an international organization based in Seoul, South Korea, that focuses on clean energy development — said he hoped to use the next chapter of his career to help poor countries meet their goals under the Paris agreement on climate change.
Environmental impact of wind power includes effect on wildlife, but can be mitigated if proper monitoring and mitigation strategies are implemented.[76] Thousands of birds, including rare species, have been killed by the blades of wind turbines,[77] though wind turbines contribute relatively insignificantly to anthropogenic avian mortality. For every bird killed by a wind turbine in the US, nearly 500,000 are killed by each of feral cats and buildings.[78] In comparison, conventional coal fired generators contribute significantly more to bird mortality, by incineration when caught in updrafts of smoke stacks and by poisoning with emissions byproducts (including particulates and heavy metals downwind of flue gases). Further, marine life is affected by water intakes of steam turbine cooling towers (heat exchangers) for nuclear and fossil fuel generators, by coal dust deposits in marine ecosystems (e.g. damaging Australia's Great Barrier Reef) and by water acidification from combustion monoxides.

Renewable energy is energy that is collected from renewable resources, which are naturally replenished on a human timescale, such as sunlight, wind, rain, tides, waves, and geothermal heat.[3] Renewable energy often provides energy in four important areas: electricity generation, air and water heating/cooling, transportation, and rural (off-grid) energy services.[4]
Renewable energy projects in many developing countries have demonstrated that renewable energy can directly contribute to poverty reduction by providing the energy needed for creating businesses and employment. Renewable energy technologies can also make indirect contributions to alleviating poverty by providing energy for cooking, space heating, and lighting. Renewable energy can also contribute to education, by providing electricity to schools.[140]
Using 100% renewable energy was first suggested in a Science paper published in 1975 by Danish physicist Bent Sørensen.[150] It was followed by several other proposals, until in 1998 the first detailed analysis of scenarios with very high shares of renewables were published. These were followed by the first detailed 100% scenarios. In 2006 a PhD thesis was published by Czisch in which it was shown that in a 100% renewable scenario energy supply could match demand in every hour of the year in Europe and North Africa. In the same year Danish Energy professor Henrik Lund published a first paper[151] in which he addresses the optimal combination of renewables, which was followed by several other papers on the transition to 100% renewable energy in Denmark. Since then Lund has been publishing several papers on 100% renewable energy. After 2009 publications began to rise steeply, covering 100% scenarios for countries in Europe, America, Australia and other parts of the world.[152]

Responsible development of all of America’s rich energy resources -- including solar, wind, water, geothermal, bioenergy & nuclear -- will help ensure America’s continued leadership in clean energy. Moving forward, the Energy Department will continue to drive strategic investments in the transition to a cleaner, domestic and more secure energy future.
$Stop getting twisted!! Gold Plated Contacts Heavy 30 amp Per conductor slip ring total 90 amps....Great for even heavy 12 volt environment wind generators as used in our Hurricane XP turbines Specs ---30 amps per conductor --- 250 volts AC/DC per circuit ---2200 watts per conductor --- rpms 0-300 ---Gold Plated Contacts ---Operational Lifespan: 80,000,000 revolutions depending on temperature, rotation speed and enviroment This rotating connector will be great for the wind generator. The current can be split up in DC applications by using two conductors to cut down on the resistance. If you have application specific questions feel free to ask me before buying. Has 3 mounting holes in colar and long wires for easy installation. To International buyers: the sales price does not include customs or duties that your country may include.
Vertical-axis wind turbines (or VAWTs) have the main rotor shaft arranged vertically. One advantage of this arrangement is that the turbine does not need to be pointed into the wind to be effective, which is an advantage on a site where the wind direction is highly variable. It is also an advantage when the turbine is integrated into a building because it is inherently less steerable. Also, the generator and gearbox can be placed near the ground, using a direct drive from the rotor assembly to the ground-based gearbox, improving accessibility for maintenance. However, these designs produce much less energy averaged over time, which is a major drawback.[24][27]

“Trump’s Keystone XL Tar Sands Oil Pipeline Promise, Unkept and Undone” • The federal judge for the District of Montana who overturned permit for the Keystone XL pipeline issued an order that all but guarantees the project will die another death by a thousand cuts. He ordered a complete do-over on economic and environmental impacts. [CleanTechnica]
Renewable energy resources and significant opportunities for energy efficiency exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency, and technological diversification of energy sources, would result in significant energy security and economic benefits.[8] It would also reduce environmental pollution such as air pollution caused by burning of fossil fuels and improve public health, reduce premature mortalities due to pollution and save associated health costs that amount to several hundred billion dollars annually only in the United States.[21] Renewable energy sources, that derive their energy from the sun, either directly or indirectly, such as hydro and wind, are expected to be capable of supplying humanity energy for almost another 1 billion years, at which point the predicted increase in heat from the sun is expected to make the surface of the earth too hot for liquid water to exist.[22][23]

The tables above are for HAWTs, the regular horizontal “wind mill” type we are all familiar with. For VAWTs the tables can be used as well, but you have to convert their dimensions. Calculate the frontal area (swept area) of the VAWT by multiplying height and width, or for a curved egg-beater approximate the area. Now convert the surface area to a diameter, as if it were a circle: Diameter = √(4 • Area / Pi). That will give you a diameter for the table. Look up the energy production for that diameter and your average annual wind speed and do the following:


Marine energy (also sometimes referred to as ocean energy) refers to the energy carried by ocean waves, tides, salinity, and ocean temperature differences. The movement of water in the world's oceans creates a vast store of kinetic energy, or energy in motion. This energy can be harnessed to generate electricity to power homes, transport and industries. The term marine energy encompasses both wave power – power from surface waves, and tidal power – obtained from the kinetic energy of large bodies of moving water. Reverse electrodialysis (RED) is a technology for generating electricity by mixing fresh river water and salty sea water in large power cells designed for this purpose; as of 2016 it is being tested at a small scale (50 kW). Offshore wind power is not a form of marine energy, as wind power is derived from the wind, even if the wind turbines are placed over water. The oceans have a tremendous amount of energy and are close to many if not most concentrated populations. Ocean energy has the potential of providing a substantial amount of new renewable energy around the world.[165]
Biofuels include a wide range of fuels which are derived from biomass. The term covers solid, liquid, and gaseous fuels.[73] Liquid biofuels include bioalcohols, such as bioethanol, and oils, such as biodiesel. Gaseous biofuels include biogas, landfill gas and synthetic gas. Bioethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. These include maize, sugarcane and, more recently, sweet sorghum. The latter crop is particularly suitable for growing in dryland conditions, and is being investigated by International Crops Research Institute for the Semi-Arid Tropics for its potential to provide fuel, along with food and animal feed, in arid parts of Asia and Africa.[74]

Renewable energy resources and significant opportunities for energy efficiency exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency, and technological diversification of energy sources, would result in significant energy security and economic benefits.[8] It would also reduce environmental pollution such as air pollution caused by burning of fossil fuels and improve public health, reduce premature mortalities due to pollution and save associated health costs that amount to several hundred billion dollars annually only in the United States.[21] Renewable energy sources, that derive their energy from the sun, either directly or indirectly, such as hydro and wind, are expected to be capable of supplying humanity energy for almost another 1 billion years, at which point the predicted increase in heat from the sun is expected to make the surface of the earth too hot for liquid water to exist.[22][23]
Airflows can be used to run wind turbines. Modern utility-scale wind turbines range from around 600 kW to 5 MW of rated power, although turbines with rated output of 1.5–3 MW have become the most common for commercial use. The largest generator capacity of a single installed onshore wind turbine reached 7.5 MW in 2015. The power available from the wind is a function of the cube of the wind speed, so as wind speed increases, power output increases up to the maximum output for the particular turbine.[42] Areas where winds are stronger and more constant, such as offshore and high altitude sites, are preferred locations for wind farms. Typically full load hours of wind turbines vary between 16 and 57 percent annually, but might be higher in particularly favorable offshore sites.[43]
My system has been installed for about a year now. When I first contracted with Envismart, the sales rep was very available and eager to help with my questions but after the installation, he was very hard to make contact with, seldom returned my calls, and when he did seemed to tell me what he thought I wanted hear and very seldom followed through. The system had a shaky start, it died after one day and after two new inverters and several optimizers over several months of on again, off again operation it seems to be running smoothly, at least for the last few months. Customer support was not very good, to be kind, but the service personnel that came out were prompt and there when they said they would be and very open about what the problems were and quickly fixed them. I was told my recurring system problems were a little unusual and I have to take their word on that but they gave me their personnel cell numbers and told me to call them when I couldn't get Customer Support to call - and when I called them, they came through and got me serviced a lot more quickly. They are the main reason I rated the company a 3.I have to say, the last month or so, it seems like the company is starting to work on changing its image. I have been called on several occasions by the "Quality Assurance" group at their initiation and asked if everything was OK with my system and I usually had an issue about something (admittedly, sometimes very minor). They always followed through with answers and corrected my concerns which was a big change from my previous experiences. I want to encourage them to continue improving their Customer Support after the sale in this manner as that is the real reputation for their company. I am still reserving my opinion but I am very much encouraged by their recent efforts - Keep it up!... read more
Wind power - Air flow on the earth's surface can be used to push turbines, with stronger winds producing more energy. High-altitude sites and areas just offshore tend to provide the best conditions for capturing the strongest winds. According to a 2009 study, a network of land-based, 2.5-megawatt wind turbines in rural areas operating at just 20% of their rated capacity could supply 40 times the current worldwide consumption of energy.
Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass.[99] As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Wood remains the largest biomass energy source today;[100] examples include forest residues – such as dead trees, branches and tree stumps –, yard clippings, wood chips and even municipal solid waste. In the second sense, biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including biofuels. Industrial biomass can be grown from numerous types of plants, including miscanthus, switchgrass, hemp, corn, poplar, willow, sorghum, sugarcane, bamboo,[101] and a variety of tree species, ranging from eucalyptus to oil palm (palm oil).
Photovoltaics (PV) uses solar cells assembled into solar panels to convert sunlight into electricity. It's a fast-growing technology doubling its worldwide installed capacity every couple of years. PV systems range from small, residential and commercial rooftop or building integrated installations, to large utility-scale photovoltaic power station. The predominant PV technology is crystalline silicon, while thin-film solar cell technology accounts for about 10 percent of global photovoltaic deployment. In recent years, PV technology has improved its electricity generating efficiency, reduced the installation cost per watt as well as its energy payback time, and has reached grid parity in at least 30 different markets by 2014.[115] Financial institutions are predicting a second solar "gold rush" in the near future.[116][117][118]
A study of the material consumption trends and requirements for wind energy in Europe found that bigger turbines have a higher consumption of precious metals but lower material input per kW generated. The current material consumption and stock was compared to input materials for various onshore system sizes. In all EU countries the estimates for 2020 exceeded and doubled the values consumed in 2009. These countries would need to expand their resources to be able to meet the estimated demand for 2020. For example, currently the EU has 3% of world supply of fluorspar and it requires 14% by 2020. Globally, the main exporting countries are South Africa, Mexico and China. This is similar with other critical and valuable materials required for energy systems such as magnesium, silver and indium. In addition, the levels of recycling of these materials is very low and focusing on that could alleviate issues with supply in the future. It is important to note that since most of these valuable materials are also used in other emerging technologies, like LEDs, PVs and LCDs, it is projected that demand for them will continue to increase.[53]
Specifications: Colors: Red Rated power: 600W Nominal voltage: 12V Start-up wind speed: 2m/s Rated wind speed: 13m/s Survival wind speed: 45m/s Package weight: 13kg Wind wheel diameter: 0.9M Number of blades: 5 Blades material: Nylon fiber Nylon fiber: Three phase ac permanent magnet generator/Maglev generatorsThree phase ac permanent magnet generator/Maglev generators Controller system: Electromagnetic Speed regulation: The wind Angle automatically Working temperature: -40℃~80℃ Features: 1. Low start-up speed, high wind power utilization, light, cute, low vibration. 2.Simple to install and maintain. 3.For home use, For monitoring use, For boat / marine use, For wind solar hybrid streetlight use. Package: 1 x Wind Turbine Generators(with controller) 1 x Stainless steel.
There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of renewable energy. This research spans several areas of focus across the renewable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[157] Multiple federally supported research organizations have focused on renewable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners.[158] Sandia has a total budget of $2.4 billion[159] while NREL has a budget of $375 million.[160]

Additions of small amount (0.5 weight %) of nanoreinforcement (carbon nanotubes or nanoclay in the polymer matrix of composites, fiber sizing or interlaminar layers can allow to increase the fatigue resistance, shear or compressive strength as well as fracture toughness of the composites by 30–80%. Research has also shown that the incorporation of small amount of carbon nanotubes/CNT can increase the lifetime up to 1500%.


There is one more area where buyers may get a false sense of security: Several states in the US have lists of “approved” wind turbines for their rebate programs. An example of this is the California list. The problem is that approval for this list, and the performance data provided (such as rated power and energy production) are essentially self-certified. The less-scrupulous manufacturers can ‘manufacture’ data and submit it under the pretence that it was measured.  The only value of those lists is in telling you what rebates are available, they do not provide reliable turbine information.

Using 100% renewable energy was first suggested in a Science paper published in 1975 by Danish physicist Bent Sørensen.[150] It was followed by several other proposals, until in 1998 the first detailed analysis of scenarios with very high shares of renewables were published. These were followed by the first detailed 100% scenarios. In 2006 a PhD thesis was published by Czisch in which it was shown that in a 100% renewable scenario energy supply could match demand in every hour of the year in Europe and North Africa. In the same year Danish Energy professor Henrik Lund published a first paper[151] in which he addresses the optimal combination of renewables, which was followed by several other papers on the transition to 100% renewable energy in Denmark. Since then Lund has been publishing several papers on 100% renewable energy. After 2009 publications began to rise steeply, covering 100% scenarios for countries in Europe, America, Australia and other parts of the world.[152]


^ Jump up to: a b c d Alsema, E.A.; Wild – Scholten, M.J. de; Fthenakis, V.M. Environmental impacts of PV electricity generation – a critical comparison of energy supply options Archived 6 March 2012 at the Wayback Machine. ECN, September 2006; 7p. Presented at the 21st European Photovoltaic Solar Energy Conference and Exhibition, Dresden, Germany, 4–8 September 2006.
Alternatively, SRECs allow for a market mechanism to set the price of the solar generated electricity subsity. In this mechanism, a renewable energy production or consumption target is set, and the utility (more technically the Load Serving Entity) is obliged to purchase renewable energy or face a fine (Alternative Compliance Payment or ACP). The producer is credited for an SREC for every 1,000 kWh of electricity produced. If the utility buys this SREC and retires it, they avoid paying the ACP. In principle this system delivers the cheapest renewable energy, since the all solar facilities are eligible and can be installed in the most economic locations. Uncertainties about the future value of SRECs have led to long-term SREC contract markets to give clarity to their prices and allow solar developers to pre-sell and hedge their credits.
You will find links to pictures that I have published of home wind Generator rooftop system installations done recently. Some are featured in newspaper articles and so forth. WindEnergy7 LLC has invented and filed for patents on a few of the technologies that make home rooftop wind Generators feasible. We have been busy training and supporting owners and dealers from California to New Jersey over the past couple of years to expand our network of local home wind Generator dealers.

Power Scorecard is a web tool that rates the environmental quality of electricity offered to customers in California, New Jersey, New York, Pennsylvania, and Texas. It will help identify products that have the lowest overall environmental impact on our air, land, and water, and those that will lead to the development of the most new renewable energy generation. Power Scorecard will be expanding into other states in the near future.
“University of Texas Study Highlights Wind’s Low Cost” • Wind, solar and natural gas have the lowest levelized cost of electricity in the majority of counties across the United States, according to a new report from The University of Texas at Austin’s Energy Institute, part of a series of white papers on the Full Cost of Electricity. [Into the Wind]

Last year, the tech giant matched 100 percent of its annual electricity consumption with renewable energy purchases, and has committed to continue doing so as the company grows. Last week, Google built on the 100 percent concept with the release of Carbon Heat Maps, which show that there are times and places where Google’s electricity profile is not yet fully carbon-free — which is what Google wants to be. 

For a 6 kW wind turbine to produce that much energy per average year, you need an annual average wind speed of close to 5 m/s (11 mph) blowing at turbine hub height. It may not sound like much, but that is a reasonably windy place. Much of North America does not have that much wind at 100′ or below. Keep in mind, you need that much wind just to break even in energy production vs. solar. To outweigh the disadvantages of small turbines you better have more!
In terms of ocean energy, another third-generation technology, Portugal has the world's first commercial wave farm, the Aguçadora Wave Park, under construction in 2007. The farm will initially use three Pelamis P-750 machines generating 2.25 MW.[44][45] and costs are put at 8.5 million euro. Subject to successful operation, a further 70 million euro is likely to be invested before 2009 on a further 28 machines to generate 525 MW.[46] Funding for a wave farm in Scotland was announced in February, 2007 by the Scottish Executive, at a cost of over 4 million pounds, as part of a £13 million funding packages for ocean power in Scotland. The farm will be the world's largest with a capacity of 3 MW generated by four Pelamis machines.[47] (see also Wave farm).
A solar cell, or photovoltaic cell (PV), is a device that converts light into electric current using the photovoltaic effect. The first solar cell was constructed by Charles Fritts in the 1880s.[5] The German industrialist Ernst Werner von Siemens was among those who recognized the importance of this discovery.[6] In 1931, the German engineer Bruno Lange developed a photo cell using silver selenide in place of copper oxide,[7] although the prototype selenium cells converted less than 1% of incident light into electricity. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the silicon solar cell in 1954.[8] These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%.[9]
×