Hydro-electricity and geothermal electricity produced at favourable sites are now the cheapest way to generate electricity. Renewable energy costs continue to drop, and the levelised cost of electricity (LCOE) is declining for wind power, solar photovoltaic (PV), concentrated solar power (CSP) and some biomass technologies.[100] Renewable energy is also the most economic solution for new grid-connected capacity in areas with good resources. As the cost of renewable power falls, the scope of economically viable applications increases. Renewable technologies are now often the most economic solution for new generating capacity. Where "oil-fired generation is the predominant power generation source (e.g. on islands, off-grid and in some countries) a lower-cost renewable solution almost always exists today".[100] A series of studies by the US National Renewable Energy Laboratory modeled the "grid in the Western US under a number of different scenarios where intermittent renewables accounted for 33 percent of the total power." In the models, inefficiencies in cycling the fossil fuel plants to compensate for the variation in solar and wind energy resulted in an additional cost of "between $0.47 and $1.28 to each MegaWatt hour generated"; however, the savings in the cost of the fuels saved "adds up to $7 billion, meaning the added costs are, at most, two percent of the savings."[101]
Environmental impact of wind power includes effect on wildlife, but can be mitigated if proper monitoring and mitigation strategies are implemented.[76] Thousands of birds, including rare species, have been killed by the blades of wind turbines,[77] though wind turbines contribute relatively insignificantly to anthropogenic avian mortality. For every bird killed by a wind turbine in the US, nearly 500,000 are killed by each of feral cats and buildings.[78] In comparison, conventional coal fired generators contribute significantly more to bird mortality, by incineration when caught in updrafts of smoke stacks and by poisoning with emissions byproducts (including particulates and heavy metals downwind of flue gases). Further, marine life is affected by water intakes of steam turbine cooling towers (heat exchangers) for nuclear and fossil fuel generators, by coal dust deposits in marine ecosystems (e.g. damaging Australia's Great Barrier Reef) and by water acidification from combustion monoxides.
Several initiatives are being proposed to mitigate distribution problems. First and foremost, the most effective way to reduce USA’s CO2 emissions and slow global warming is through conservation efforts. Opponents of the current US electrical grid have also advocated for decentralizing the grid. This system would increase efficiency by reducing the amount of energy lost in transmission. It would also be economically viable as it would reduce the amount of power lines that will need to be constructed in the future to keep up with demand. Merging heat and power in this system would create added benefits and help to increase its efficiency by up to 80-90%. This is a significant increase from the current fossil fuel plants which only have an efficiency of 34%.[92]

In 2004, natural gas accounted for about 19 percent of the U.S. electricity mix. Use of natural gas is projected to increase dramatically in the next two decades if we continue on our current path, but supplies are limited and imports are increasing. Our growing reliance on natural gas combined with limited supplies makes this fuel subject to price spikes, which can have a significant impact on consumer energy costs. In addition, though natural gas is much cleaner than coal or oil, it does produce global warming emissions when burned. So, while the use of natural gas serves as a good transition to a cleaner future, it is not the ultimate solution.
At GE, product evolution is at our core, and we are continuously working to develop the next generation of wind energy. Beginning in 2002 with one wind turbine model, we now offer a full suite of turbines created for a variety of wind environments. We offer increased value to customers with proven performance, reliability, and availability. Our portfolio of turbines feature rated capacities from 1.7 MW to 5.3 MW (Onshore) and 6 MW to 12 MW (Offshore), we are uniquely suited to meet the needs of a broad range of wind regimes. 
With Georgetown emerging as a brave new model for a renewable city, it makes sense to ask if others can achieve the same magical balance of more power, less pollution and lower costs. In fact, cities ranging from Orlando to St. Louis to San Francisco to Portland, Oregon, have pledged to run entirely on renewable energy. Those places are much larger than Georgetown, of course, and no one would expect misty Portland to power a light bulb for long with solar energy, which is crucial to Georgetown’s success. But beyond its modest size, abundant sunshine and archetype-busting mayor, Georgetown has another edge, one that’s connected to a cherished Lone Star ideal: freedom.
“California Looks to Stationary Energy Storage as a Solution to Peaker Plants” • Central California electric utility Pacific Gas & Electric is planning to replace three old natural gas power plants in its network with stationary energy storage installations from Tesla. California is looking to add 1.3 GW of storage to its power grid by 2020. [CleanTechnica]

With that in mind it makes a great deal of sense to use a tilt-up tower for your turbine. It makes maintenance and repairs much safer (on the ground) and cheaper. Crane fees, or having turbine installers hang off the top of a tower for long periods of time, tend to get very expensive. You should also budget for repairs, they will happen. Parts may be free under warranty, your installer’s time is not.

The first three are active solar systems, which use mechanical or electrical devices that convert the sun's heat or light to another form of usable energy. Passive solar buildings are designed and oriented to collect, store, and distribute the heat energy from sunlight to maintain the comfort of the occupants without the use of moving parts or electronics.
The use of a gearbox allows for better matching of the generator speed to that of the turbine but the disadvantage of using a gearbox is that as a mechanical component it is subjected to wear and tear reducing the efficiency of the system. Direct drive however may be more simple and efficient, but the generators rotor shaft and bearings are subjected to the full weight and rotational force of the rotor blades.
Climate change and global warming concerns, coupled with high oil prices, peak oil, and increasing government support, are driving increasing renewable energy legislation, incentives and commercialization.[10] New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors.[24] According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment.[25]
The tables above are for HAWTs, the regular horizontal “wind mill” type we are all familiar with. For VAWTs the tables can be used as well, but you have to convert their dimensions. Calculate the frontal area (swept area) of the VAWT by multiplying height and width, or for a curved egg-beater approximate the area. Now convert the surface area to a diameter, as if it were a circle: Diameter = √(4 • Area / Pi). That will give you a diameter for the table. Look up the energy production for that diameter and your average annual wind speed and do the following:
"Eggbeater" turbines, or Darrieus turbines, were named after the French inventor, Georges Darrieus.[31] They have good efficiency, but produce large torque ripple and cyclical stress on the tower, which contributes to poor reliability. They also generally require some external power source, or an additional Savonius rotor to start turning, because the starting torque is very low. The torque ripple is reduced by using three or more blades which results in greater solidity of the rotor. Solidity is measured by blade area divided by the rotor area. Newer Darrieus type turbines are not held up by guy-wires but have an external superstructure connected to the top bearing.[32]
Maybe you reside on a boat, vacation in a remote cabin, or live off-grid like me. Or perhaps you’re just interested in lowering your energy bill. Either way, with a handful of inexpensive and easy-to-source materials, you can build a homemade wind generator, making electricity yours for the taking for as long as the wind is blowing. You’ll be able to light up that storeroom, power your barn, or use a generator to keep all your vehicle batteries charged.
From 1978 to 1996, the National Renewable Energy Laboratory experimented with producing algae fuel in the "Aquatic Species Program."[112] A self-published article by Michael Briggs, at the University of New Hampshire Biofuels Group, offers estimates for the realistic replacement of all motor vehicle fuel with biofuels by utilizing algae that have a natural oil content greater than 50%, which Briggs suggests can be grown on algae ponds at wastewater treatment plants.[113] This oil-rich algae can then be extracted from the system and processed into biofuels, with the dried remainder further reprocessed to create ethanol. The production of algae to harvest oil for biofuels has not yet been undertaken on a commercial scale, but feasibility studies have been conducted to arrive at the above yield estimate. During the biofuel production process algae actually consumes the carbon dioxide in the air and turns it into oxygen through photosynthesis.[114] In addition to its projected high yield, algaculture— unlike food crop-based biofuels — does not entail a decrease in food production, since it requires neither farmland nor fresh water. Many companies are pursuing algae bio-reactors for various purposes, including scaling up biofuels production to commercial levels.[115][116]
Floating solar arrays are PV systems that float on the surface of drinking water reservoirs, quarry lakes, irrigation canals or remediation and tailing ponds. A small number of such systems exist in France, India, Japan, South Korea, the United Kingdom, Singapore and the United States.[168][169][170][171][172] The systems are said to have advantages over photovoltaics on land. The cost of land is more expensive, and there are fewer rules and regulations for structures built on bodies of water not used for recreation. Unlike most land-based solar plants, floating arrays can be unobtrusive because they are hidden from public view. They achieve higher efficiencies than PV panels on land, because water cools the panels. The panels have a special coating to prevent rust or corrosion.[173] In May 2008, the Far Niente Winery in Oakville, California, pioneered the world's first floatovoltaic system by installing 994 solar PV modules with a total capacity of 477 kW onto 130 pontoons and floating them on the winery's irrigation pond.[174] Utility-scale floating PV farms are starting to be built. Kyocera will develop the world's largest, a 13.4 MW farm on the reservoir above Yamakura Dam in Chiba Prefecture[175] using 50,000 solar panels.[176][177] Salt-water resistant floating farms are also being constructed for ocean use.[178] The largest so far announced floatovoltaic project is a 350 MW power station in the Amazon region of Brazil.[179]
Features:Human-friendly design, easy to install and maintain.Patented generator, low torque at start-up, high conversion rate.Low start-up speed, high wind power utilization, low vibration and low noise.Automatically adjust wind direction, high cost-performance. The use of high temperature Teflon wire, die-casting aluminum for the shell material of the generator.Blade built-in copper inserts, bolts will not damage when the nylon fiber damage, it is not e.
While many renewable energy projects are large-scale, renewable technologies are also suited to rural and remote areas and developing countries, where energy is often crucial in human development.[13] Former United Nations Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity.[14] As most of renewables provide electricity, renewable energy deployment is often applied in conjunction with further electrification, which has several benefits: Electricity can be converted to heat (where necessary generating higher temperatures than fossil fuels), can be converted into mechanical energy with high efficiency and is clean at the point of consumption.[15][16] In addition to that electrification with renewable energy is much more efficient and therefore leads to a significant reduction in primary energy requirements, because most renewables don't have a steam cycle with high losses (fossil power plants usually have losses of 40 to 65%).[17]

One 50 Amp 1000 Volt - 3 Phase Rectifier ---Intended for wind turbine rated for 50 amps continuous usage. ---This item is used to convert 3 phase AC to DC. ---Rectifier has spade terminals which will make for a clean and secure installation. No wondering if your wiring is going to come loose. ---One mounting hole to secure the body of the rectifier to your mounting box ---This item is not to me confused with a blocking diode to be used in DC motor applications or with solar. Powered by [eBay Turbo Lister] (http://pages.ebay.com/turbo_lister/) The free listing tool. List your items fast and easy and manage your active items. Froo www.froo.com | Froo Cross Sell, Free Cross Sell, Cross promote, eBay Marketing, eBay listing Apps, eBay Apps, eBay Application [FREE! Sellers: Add a FREE map to your listings. FREE!] (http://newage.mystoremaps.
This listing is for: One Heavy 100 Amp Rectifier ---Heavy quality rectifier intended for wind turbine rated for 100 amps continuous usage. ---This item is used to convert 3 phase AC to DC. This heavy rectifier is built into a heat sink body that allows unit to keep cool. ---Rectifier has spade terminals which will make for a clean and secure installation. No wondering if your wiring is going to come loose. ---Two mounting holes to secure the body of the rectifier to your mounting box ---This item is not to me confused with a blocking diode to be used in DC motor applications or with solar. Powered by [eBay Turbo Lister] (http://pages.ebay.com/turbo_lister/) The free listing tool. List your items fast and easy and manage your active items. Froo www.froo.
All these electrical machines are electromechanical devices that work on Faraday’s law of electromagnetic induction. That is they operate through the interaction of a magnetic flux and an electric current, or flow of charge. As this process is reversible, the same machine can be used as a conventional electrical motor for converting the electrical power into mechanical power, or as a generator converting the mechanical power back into the electrical power.
On most horizontal wind turbine farms, a spacing of about 6–10 times the rotor diameter is often upheld. However, for large wind farms distances of about 15 rotor diameters should be more economical, taking into account typical wind turbine and land costs. This conclusion has been reached by research[62] conducted by Charles Meneveau of the Johns Hopkins University,[63] and Johan Meyers of Leuven University in Belgium, based on computer simulations[64] that take into account the detailed interactions among wind turbines (wakes) as well as with the entire turbulent atmospheric boundary layer.
Photovoltaics were initially solely used as a source of electricity for small and medium-sized applications, from the calculator powered by a single solar cell to remote homes powered by an off-grid rooftop PV system. Commercial concentrated solar power plants were first developed in the 1980s. The 392 MW Ivanpah installation is the largest concentrating solar power plant in the world, located in the Mojave Desert of California.
×