In a twist that has some Republicans in this oil- and gas-rich state whistling Dixie, Ross is now friends with Al Gore, who featured Ross in An Inconvenient Sequel, the 2017 follow-up to An Inconvenient Truth, his Oscar-winning documentary about global warming. “We bonded right away,” Ross recalls. “I said, ‘Mr. Vice President, we’ve got a lot in common. You invented the internet. I invented green energy.’” Trained as an accountant, Ross still works as one—being mayor of Georgetown is a part-time job—and there’s no mistaking his zeal for the other kind of green. When conservatives complain about his energy politics, he is quick to remind them that the city has the lowest effective tax rate in Central Texas.
Buying a wind turbine generator such as the Windmax HY1000 to produce wind energy is not easy and there are a lot of factors to take into account. Price is only one of them. Be sure to choose an electrical machine that meets your needs. If you are installing a grid-connected system, choose an AC mains voltage generator. If you are installing a battery-based system, look for a battery-charging DC generator. Also consider the mechanical design of a generator such as size and weight, operating speed and protection from the environment as it will spend all of its life mounted at the top of a pole or tower.
There is one more area where buyers may get a false sense of security: Several states in the US have lists of “approved” wind turbines for their rebate programs. An example of this is the California list. The problem is that approval for this list, and the performance data provided (such as rated power and energy production) are essentially self-certified. The less-scrupulous manufacturers can ‘manufacture’ data and submit it under the pretence that it was measured.  The only value of those lists is in telling you what rebates are available, they do not provide reliable turbine information.
Adam Schultz, a senior policy analyst for the Oregon Department of Energy, says he’s more encouraged than ever about the prospects for renewables. Because the Pacific Northwest features large-scale hydropower plants built as part of the New Deal, energy already tends to be less expensive there than the U.S. average. But solar and wind power have “gotten cheaper over the last couple years to the point that I can’t even tell you what the costs are because costs have been dropping so rapidly,” Schultz says. “We have enough sunshine,” he says (presumably referring to the eastern part of the state), “so it’s just a matter of time.”

You have read this far, and still want to install a wind turbine? Then it is time for a reality check: Most (some would say all) installed small wind turbines do abysmally poor in comparison with their energy production numbers as calculated above. That is the message from a number of studies, usually on behalf of governments that subsidize wind turbines. Do not just take our word for this, read it for yourself:

The energy in the wind goes up with the cube of the wind speed. Double the wind speed and you have 2 * 2 * 2 = 8 times the energy! Sit back and let the full weight of that sink in for a moment: It means that even a small difference in annual average wind speed will make a BIG difference in how much your wind turbine will produce: Putting that turbine in a place that has just 10% more wind will net you 1.1 * 1.1 * 1.1 = 1.33 = a full 33% more energy!
VAWT type turbines have no inherent advantage over HAWT type turbines. There, we have said it! VAWTs do not do any better in turbulent wind than HAWTs. Leaving the Savonius type VAWTs out (the type that looks like an oil drum cut in half – they have very poor efficiency anyway), both horizontal and vertical type turbines rely on an airfoil, a wing, to produce power. Airfoils simply do not work well in turbulent air; the wind needs to hit them at just the right angle and eddies wreak havoc. Couple that with the insistence of vertical axis turbine manufacturers to install their devices on very short towers or rooftops, and you get the picture. It will not work.

The first electricity-generating wind turbine was a battery charging machine installed in July 1887 by Scottish academic James Blyth to light his holiday home in Marykirk, Scotland.[7] Some months later American inventor Charles F. Brush was able to build the first automatically operated wind turbine after consulting local University professors and colleagues Jacob S. Gibbs and Brinsley Coleberd and successfully getting the blueprints peer-reviewed for electricity production in Cleveland, Ohio.[7] Although Blyth's turbine was considered uneconomical in the United Kingdom,[7] electricity generation by wind turbines was more cost effective in countries with widely scattered populations.[6]


Solar thermal power stations have been successfully operating in California commercially since the late 1980s, including the largest solar power plant of any kind, the 350 MW Solar Energy Generating Systems. Nevada Solar One is another 64MW plant which has recently opened.[34] Other parabolic trough power plants being proposed are two 50MW plants in Spain, and a 100MW plant in Israel.[35]
The windwheel of Hero of Alexandria (10 AD – 70 AD) marks one of the first recorded instances of wind powering a machine in history.[2][3] However, the first known practical wind power plants were built in Sistan, an Eastern province of Persia (now Iran), from the 7th century. These "Panemone" were vertical axle windmills, which had long vertical drive shafts with rectangular blades.[4] Made of six to twelve sails covered in reed matting or cloth material, these windmills were used to grind grain or draw up water, and were used in the gristmilling and sugarcane industries.[5]

Solar power is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV), indirectly using concentrated solar power, or a combination. Concentrated solar power systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Photovoltaic cells convert light into an electric current using the photovoltaic effect.[1]
×