Many residential PV systems are connected to the grid wherever available, especially in developed countries with large markets.[10] In these grid-connected PV systems, use of energy storage is optional. In certain applications such as satellites, lighthouses, or in developing countries, batteries or additional power generators are often added as back-ups. Such stand-alone power systems permit operations at night and at other times of limited sunlight.
Space-Based Solar Power Satellites seek to overcome the problems of storage and provide civilization-scale power that is clean, constant, and global. Japan and China have active national programs aimed at commercial scale Space-Based Solar Power (SBSP), and both nation's hope to orbit demonstrations in the 2030s. The China Academy of Space Technology (CAST) won the 2015 International SunSat Design Competition with this video of their Multi-Rotary Joint design. Proponents of SBSP claim that Space-Based Solar Power would be clean, constant, and global, and could scale to meet all planetary energy demand.[56] A recent multi-agency industry proposal (echoing the 2008 Pentagon recommendation) won the SECDEF/SECSTATE/USAID Director D3 (Diplomacy, Development, Defense) Innovation Challenge [57] with the following pitch and vision video.[132] Northrop Grumman is funding CALTECH with $17.5 million[133] for an ultra lightweight design.[134] Keith Henson posted a video of a "bootstrapping" approach.
Our latest innovation in the Industrial Internet era, The Digital Wind Farm, is making our turbines smarter and more connected than ever before. A dynamic, connected and adaptable wind energy ecosystem, the Digital Wind Farm pairs our newest turbines with a digital infrastructure, allowing customers to connect, monitor, predict and optimize unit and site performance.
A: Modern solar panels typically last twenty to thirty years before there’s a noticeable increase in output loss. Most residential solar providers offer a 20- to 25-year warranty, but many such warranties only guarantee a certain power output (e.g., a guarantee of 80% output for twenty years). Carefully read through the fine print to make sure you understand the warranty and what it covers.
Renewable energy projects in many developing countries have demonstrated that renewable energy can directly contribute to poverty reduction by providing the energy needed for creating businesses and employment. Renewable energy technologies can also make indirect contributions to alleviating poverty by providing energy for cooking, space heating, and lighting. Renewable energy can also contribute to education, by providing electricity to schools.[140]

In the United States, one of the main problems with purchasing green energy through the electrical grid is the current centralized infrastructure that supplies the consumer’s electricity. This infrastructure has led to increasingly frequent brown outs and black outs, high CO2 emissions, higher energy costs, and power quality issues.[89] An additional $450 billion will be invested to expand this fledgling system over the next 20 years to meet increasing demand.[90] In addition, this centralized system is now being further overtaxed with the incorporation of renewable energies such as wind, solar, and geothermal energies. Renewable resources, due to the amount of space they require, are often located in remote areas where there is a lower energy demand. The current infrastructure would make transporting this energy to high demand areas, such as urban centers, highly inefficient and in some cases impossible. In addition, despite the amount of renewable energy produced or the economic viability of such technologies only about 20 percent will be able to be incorporated into the grid. To have a more sustainable energy profile, the United States must move towards implementing changes to the electrical grid that will accommodate a mixed-fuel economy.[91]
On most horizontal wind turbine farms, a spacing of about 6–10 times the rotor diameter is often upheld. However, for large wind farms distances of about 15 rotor diameters should be more economical, taking into account typical wind turbine and land costs. This conclusion has been reached by research[62] conducted by Charles Meneveau of the Johns Hopkins University,[63] and Johan Meyers of Leuven University in Belgium, based on computer simulations[64] that take into account the detailed interactions among wind turbines (wakes) as well as with the entire turbulent atmospheric boundary layer.
There are potentially two sources of nuclear power. Fission is used in all current nuclear power plants. Fusion is the reaction that exists in stars, including the sun, and remains impractical for use on Earth, as fusion reactors are not yet available. However nuclear power is controversial politically and scientifically due to concerns about radioactive waste disposal, safety, the risks of a severe accident, and technical and economical problems in dismantling of old power plants.[120]
We now know that the electrical generator provides a means of energy conversion between the mechanical torque generated by the rotor blades, called the prime mover, and some electrical load. The mechanical connection of the wind turbine generator to the rotor blades is made through a main shaft which can be either a simple direct drive, or by using a gearbox to increase or decrease the generator speed relative to the rotational speed of the blades.
In 2007, the world's first turbine to create commercial amounts of energy using tidal power was installed in the narrows of Strangford Lough in Ireland. The 1.2 MW underwater tidal electricity generator takes advantage of the fast tidal flow in the lough which can be up to 4m/s. Although the generator is powerful enough to power up to a thousand homes, the turbine has a minimal environmental impact, as it is almost entirely submerged, and the rotors turn slowly enough that they pose no danger to wildlife.[48][49]

I ask Gore about the lessons he takes from Georgetown. “I think it’s important to pay attention to a CPA who becomes a mayor and takes an objective look at how he can save money for the citizens of his community, even if it means ignoring ideological presuppositions about fossil energy. Especially when the mayor in question is in the heart of oil and gas country.”


Any solar PV system that’s tied to the grid will use a bi-directional meter. When you use electricity from the grid, you’ll see your meter move forward. But when your solar PV system produces electricity, any excess will go back into the grid and your meter will move backward. This is called “net metering,” and the utility company will credit your bill for the excess electricity generated.
The stiffness of composites is determined by the stiffness of fibers and their volume content. Typically, E-glass fibers are used as main reinforcement in the composites. Typically, the glass/epoxy composites for wind blades contain up to 75 weight % glass. This increases the stiffness, tensile and compression strength. A promising source of the composite materials in the future is glass fibers with modified compositions like S-glass, R-glass etc. Some other special glasses developed by Owens Corning are ECRGLAS, Advantex and most recently WindStrand glass fibers. [49]

As local wind speed increases, so does the power output. Since this type of generator uses wind as 'fuel', it is important to choose an appropriate site for mounting the turbine. The ideal location for a wind generator is 20 feet above any surrounding object within a 250-foot radius. Wind speed increases with height above ground, so a taller mast can provide significant gains in energy production.


The trouble with rated power is that it does not tell you anything about energy production. Your utility company charges you for the energy you consume, not power. Likewise, for a small wind  turbine you should be interested in the energy it will produce, for your particular site, with your particular annual average wind speed. Rated power of the turbine does not do that. To find out about energy production take a look at the tables presented earlier.
Due to increased technology and wide implementation, the global glass fiber market might reach US$17.4 billion by 2024, compared to US$8.5 billion in 2014. Since it is the most widely used material for reinforcement in composites around the globe, the expansion of end use applications such as construction, transportation and wind turbines has fueled its popularity. Asia Pacific held the major share of the global market in 2014 with more than 45% volume share. However China is currently the largest producer. The industry receives subsidies from the Chinese government allowing them to export it cheaper to the US and Europe. However, due to the higher demand in the near future some price wars have started to developed to implement anti dumping strategies such as tariffs on Chinese glass fiber.[58]
The majority of green pricing programs charge a higher price per kilowatt-hour to support an increased percentage of renewable sources or to buy discrete kilowatt-hour blocks of renewable energy. Other programs have fixed monthly fees, round up customer bills, charge for units of renewable capacity, or offer renewable energy systems for lease or purchase.
With advanced technology being developed, cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the United States and in Brazil. The energy costs for producing bio-ethanol are almost equal to, the energy yields from bio-ethanol. However, according to the European Environment Agency, biofuels do not address global warming concerns.[75] Biodiesel is made from vegetable oils, animal fats or recycled greases. It can be used as a fuel for vehicles in its pure form, or more commonly as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe. Biofuels provided 2.7% of the world's transport fuel in 2010.[76]
Other renewable energy technologies are still under development, and include cellulosic ethanol, hot-dry-rock geothermal power, and marine energy.[156] These technologies are not yet widely demonstrated or have limited commercialization. Many are on the horizon and may have potential comparable to other renewable energy technologies, but still depend on attracting sufficient attention and research, development and demonstration (RD&D) funding.[156]
Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources such as trees and grasses is also being developed as a feedstock for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the USA and in Brazil. Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe.

Outline of energy Energy Units Conservation of energy Energetics Energy transformation Energy condition Energy transition Energy level Energy system Mass Negative mass Mass–energy equivalence Power Thermodynamics Quantum thermodynamics Laws of thermodynamics Thermodynamic system Thermodynamic state Thermodynamic potential Thermodynamic free energy Irreversible process Thermal reservoir Heat transfer Heat capacity Volume (thermodynamics) Thermodynamic equilibrium Thermal equilibrium Thermodynamic temperature Isolated system Entropy Free entropy Entropic force Negentropy Work Exergy Enthalpy
While many renewable energy projects are large-scale, renewable technologies are also suited to rural and remote areas and developing countries, where energy is often crucial in human development.[13] Former United Nations Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity.[14] As most of renewables provide electricity, renewable energy deployment is often applied in conjunction with further electrification, which has several benefits: Electricity can be converted to heat (where necessary generating higher temperatures than fossil fuels), can be converted into mechanical energy with high efficiency and is clean at the point of consumption.[15][16] In addition to that electrification with renewable energy is much more efficient and therefore leads to a significant reduction in primary energy requirements, because most renewables don't have a steam cycle with high losses (fossil power plants usually have losses of 40 to 65%).[17]
At the end of 2006, the Ontario Power Authority (OPA, Canada) began its Standard Offer Program, a precursor to the Green Energy Act, and the first in North America for distributed renewable projects of less than 10 MW. The feed-in tariff guaranteed a fixed price of $0.42 CDN per kWh over a period of twenty years. Unlike net metering, all the electricity produced was sold to the OPA at the given rate.

Renewable energy and energy efficiency are sometimes said to be the "twin pillars" of sustainable energy policy. Both resources must be developed in order to stabilize and reduce carbon dioxide emissions. Efficiency slows down energy demand growth so that rising clean energy supplies can make deep cuts in fossil fuel use. If energy use grows too fast, renewable energy development will chase a receding target. A recent historical analysis has demonstrated that the rate of energy efficiency improvements has generally been outpaced by the rate of growth in energy demand, which is due to continuing economic and population growth. As a result, despite energy efficiency gains, total energy use and related carbon emissions have continued to increase. Thus, given the thermodynamic and practical limits of energy efficiency improvements, slowing the growth in energy demand is essential.[61] However, unless clean energy supplies come online rapidly, slowing demand growth will only begin to reduce total emissions; reducing the carbon content of energy sources is also needed. Any serious vision of a sustainable energy economy thus requires commitments to both renewables and efficiency.[62]


Solar energy is the cleanest and most abundant renewable energy source available, and the U.S. has some of the richest solar resources in the world. Solar technologies can harness this energy for a variety of uses, including generating electricity, providing light or a comfortable interior environment, and heating water for domestic, commercial, or industrial use.
Solar Power Rocks provides free comprehensive guides to solar policy and incentives for all 50 states and the District of Columbia, along with hundreds of helpful and informative articles about recent solar news and general information related to home solar power. For media inquiries, general questions, or to report an error, you can reach us here.
Solar energy is a flexible energy technology: it can be built as distributed generation (located at or near the point of use) or as a central-station, utility-scale solar power plant (similar to traditional power plants). Both of these methods can also store the energy they produce for distribution after the sun sets, using cutting edge solar + storage technologies.
For a 6 kW wind turbine to produce that much energy per average year, you need an annual average wind speed of close to 5 m/s (11 mph) blowing at turbine hub height. It may not sound like much, but that is a reasonably windy place. Much of North America does not have that much wind at 100′ or below. Keep in mind, you need that much wind just to break even in energy production vs. solar. To outweigh the disadvantages of small turbines you better have more!
Small-scale turbines are expensive (one manufacturer says a typical system costs $40,000 to $60,000 to install), though some of that outlay can be offset by federal and local tax credits. Experts recommend that you buy one certified by the Small Wind Certification Council. Turbine manufacturers include Bergey Wind Power, Britwind and Xzeres Wind; look on their websites for local dealers.
Features:Low wind speed start-up(2m/s), high wind power utilization, light,cute, low vibration.Human-friendly design,easy to install and maintain.Blades using reinforced glass fiber, helped with optimized structure and aerodynamic shape, it enhanced wind power coefficient and power generating capacity.Using patented permanent magnet generator and special stator, it effectively reduces torque resistance and guarantees the stability.The 24V DC 400W wind turbine is an eco.
The expansion is thanks largely to innovation on the policy front, which has opened up opportunities in regulated electricity markets. The number of corporate renewable energy deals signed under utility green tariff programs continues to grow, representing around 25 percent of corporate renewables procurement so far this year. At the same time, utilities are incorporating corporate renewables into their long-term planning — and thinking about solutions beyond green tariffs to better meet the needs of existing corporate customers and smaller loads.
In an electricity system without grid energy storage, generation from stored fuels (coal, biomass, natural gas, nuclear) must be go up and down in reaction to the rise and fall of solar electricity (see load following power plant). While hydroelectric and natural gas plants can quickly follow solar being intermittent due to the weather, coal, biomass and nuclear plants usually take considerable time to respond to load and can only be scheduled to follow the predictable variation. Depending on local circumstances, beyond about 20–40% of total generation, grid-connected intermittent sources like solar tend to require investment in some combination of grid interconnections, energy storage or demand side management. Integrating large amounts of solar power with existing generation equipment has caused issues in some cases. For example, in Germany, California and Hawaii, electricity prices have been known to go negative when solar is generating a lot of power, displacing existing baseload generation contracts.[107][108]
Wind turbines allow us to harness the power of the wind and turn it into energy. When the wind blows, the turbine's blades spin clockwise, capturing energy. This triggers the main shaft, connected to a gearbox within the nacelle, to spin. The gearbox sends that energy to the generator, converting it to electricity. Electricity then travels down the tower to a transformer, where voltage levels are adjusted to match with the grid.
As of 2014, offshore wind power amounted to 8,771 megawatt of global installed capacity. Although offshore capacity doubled within three years (from 4,117 MW in 2011), it accounted for only 2.3% of the total wind power capacity. The United Kingdom is the undisputed leader of offshore power with half of the world's installed capacity ahead of Denmark, Germany, Belgium and China.
Meanwhile, we enjoy life grid intertied here in northern California. Our daughters and their families are nearby using their independent living skills to make their own homes.  One daughter has designed and sold 300 off-grid or gridtie solar electric systems since the first of the year.  The other is baking bread today and figuring out what to do with the multitude of tomatillos, squash and eggplant that are spilling out of our garden.  I’m so proud of my tribe!
The stator is the “stationary” (hence its name) part of the machine and can have either a set of electrical windings producing an electromagnet or a set of permanent magnets within its design. The rotor is the part of the machine that “rotates”. Again, the rotor can have output coils that rotate or permanent magnets. Generally, generators and alternators used for wind turbine generators are defined by how they make generate their magnetism, either electromagnets or permanent magnets.
Other renewable energy technologies are still under development, and include cellulosic ethanol, hot-dry-rock geothermal power, and marine energy.[156] These technologies are not yet widely demonstrated or have limited commercialization. Many are on the horizon and may have potential comparable to other renewable energy technologies, but still depend on attracting sufficient attention and research, development and demonstration (RD&D) funding.[156]
Airflows can be used to run wind turbines. Modern utility-scale wind turbines range from around 600 kW to 5 MW of rated power, although turbines with rated output of 1.5–3 MW have become the most common for commercial use. The largest generator capacity of a single installed onshore wind turbine reached 7.5 MW in 2015. The power available from the wind is a function of the cube of the wind speed, so as wind speed increases, power output increases up to the maximum output for the particular turbine.[42] Areas where winds are stronger and more constant, such as offshore and high altitude sites, are preferred locations for wind farms. Typically full load hours of wind turbines vary between 16 and 57 percent annually, but might be higher in particularly favorable offshore sites.[43]
We harness the earth’s most abundant resources – the strength of the wind, the heat of the sun and the force of water – to power the world’s biggest economies and the most remote communities. Combining onshore and offshore wind, hydro and innovative technologies, GE Renewable Energy has installed more than 400+ gigawatts capacity globally to make the world work better and cleaner.

“Volkswagen Converting Zwickau Automotive Plant to Produce Electric Vehicles” • In a move that it believes is the first of its kind in the world for a major car factory, VW is converting its auto factory in Zwickau, Germany from internal combustion vehicle production to manufacture of electric vehicles. The plant makes 330,000 cars per year. [CleanTechnica]
A Wind Turbine Generator is what makes your electricity by converting mechanical energy into electrical energy. Lets be clear here, they do not create energy or produce more electrical energy than the amount of mechanical energy being used to spin the rotor blades. The greater the “load”, or electrical demand placed on the generator, the more mechanical force is required to turn the rotor. This is why generators come in different sizes and produce differing amounts of electricity.
Small wind turbines may be used for a variety of applications including on- or off-grid residences, telecom towers, offshore platforms, rural schools and clinics, remote monitoring and other purposes that require energy where there is no electric grid, or where the grid is unstable. Small wind turbines may be as small as a fifty-watt generator for boat or caravan use. Hybrid solar and wind powered units are increasingly being used for traffic signage, particularly in rural locations, as they avoid the need to lay long cables from the nearest mains connection point.[60] The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) defines small wind turbines as those smaller than or equal to 100 kilowatts.[61] Small units often have direct drive generators, direct current output, aeroelastic blades, lifetime bearings and use a vane to point into the wind.

The comments stand in contrast to those made by Trump administration representatives also speaking at the energy summit, which is known as CERAWeek. Rick Perry, the energy secretary, on Wednesday criticized what he described as the “mind-set of the Paris agreement” that he contends supports renewable energy to the exclusion of other energy sources. And he took aim at countries pledging to phase out coal use.
This items including : 2pcs 400W wind turbine with grid tie controller ,2pcs waterproof grid tie inverter ! Why Off Grid Systems Should Include Wind? Wind provides power at night. Wind is strongest during the winter months when solar resources are limited. Wind provides power during poor weather conditions. Air density is higher in colder weather and maximizes power production.

^ Jump up to: a b c Fridleifsson,, Ingvar B.; Bertani, Ruggero; Huenges, Ernst; Lund, John W.; Ragnarsson, Arni; Rybach, Ladislaus (11 February 2008). O. Hohmeyer and T. Trittin, ed. "The possible role and contribution of geothermal energy to the mitigation of climate change" (PDF). Luebeck, Germany: 59–80. Archived from the original (pdf) on 22 July 2011. Retrieved 6 April 2009.

Green energy is the term used to describe sources of energy that are considered to be environmentally friendly and non-polluting, such as geothermal, wind, solar, and hydro. Sometimes nuclear power is also considered a green energy source. Green energy sources are often considered "green" because they are perceived to lower carbon emissions and create less pollution.

Consumers throughout the United States have a third green power option: Renewable Energy Certificates (RECs or sometimes "green tags"). A REC represents the environmental attributes or benefits of renewable electricity generation (usually one credit = one kilowatt-hour). RECs can be purchased in almost any quantity and are usually available from someone other than your electricity provider. What you pay for is the benefit of adding clean, renewable energy generation to the regional or national electricity grid. The overall environmental benefit of purchasing a green pricing or green marketing product versus RECs is exactly the same. RECs provide a "green" option for people in any state, but are ideal for people who live in states where green pricing and green marketing options are not available. 
Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18 percent of the country's automotive fuel. As a result of this, together with the exploitation of domestic deep water oil sources, Brazil, which years ago had to import a large share of the petroleum needed for domestic consumption, recently reached complete self-sufficiency in oil.[36][37][38]
Buying a wind turbine generator such as the Windmax HY1000 to produce wind energy is not easy and there are a lot of factors to take into account. Price is only one of them. Be sure to choose an electrical machine that meets your needs. If you are installing a grid-connected system, choose an AC mains voltage generator. If you are installing a battery-based system, look for a battery-charging DC generator. Also consider the mechanical design of a generator such as size and weight, operating speed and protection from the environment as it will spend all of its life mounted at the top of a pole or tower.
Despite these diverse developments, developments in fossil fuel systems almost entirely eliminated any wind turbine systems larger than supermicro size. In the early 1970s, however, anti-nuclear protests in Denmark spurred artisan mechanics to develop microturbines of 22 kW. Organizing owners into associations and co-operatives lead to the lobbying of the government and utilities and provided incentives for larger turbines throughout the 1980s and later. Local activists in Germany, nascent turbine manufacturers in Spain, and large investors in the United States in the early 1990s then lobbied for policies that stimulated the industry in those countries.
There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of renewable energy. This research spans several areas of focus across the renewable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[157] Multiple federally supported research organizations have focused on renewable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners.[158] Sandia has a total budget of $2.4 billion[159] while NREL has a budget of $375 million.[160]
The reliability of small wind turbines is (still) problematic. Even the good ones break much more frequently than we would like, and none will run for 20 years without the need to replace at least some part(s). Despite their apparent simplicity, a small wind turbine is nowhere near as reliable as the average car (and even cars will not run for 20 years without stuff breaking). If you are going to install a small wind turbine you should expect that it will break. The only questions are when and how often.
By Ellen Coleman—As an American of non-specific cultural identity, I look with envy at families with strong cultural tradition. I wonder who "my people” are. What family traditions will my children (now grown) want to pass on to their own children?  Their exposure has been such a mixed bag of “ritual”—making tamales for Thanksgiving, potstickers for family reunions, fried eggplant for Fourth of July.  What will be their choice of comfort music?  What kinds of homes will they make, what spiritual paths will they take?

With feed-in tariffs, the financial burden falls upon the consumer. They reward the number of kilowatt-hours produced over a long period of time, but because the rate is set by the authorities, it may result in perceived overpayment. The price paid per kilowatt-hour under a feed-in tariff exceeds the price of grid electricity. Net metering refers to the case where the price paid by the utility is the same as the price charged.
×