Renewable energy variability is a problem for corporate buyers. But what is undesirable to buyers is attractive for insurance companies, whose core business revolves around managing weather-related risks. VFAs sit on top of a new or existing PPA and are effectively designed to pay the corporate buyer when they’re getting less renewable power than they contracted for, and give money to the insurer when there’s more.
In 2007, the US Congress directed the Department of Energy to report on ways to reduce water consumption by CSP. The subsequent report noted that dry cooling technology was available that, although more expensive to build and operate, could reduce water consumption by CSP by 91 to 95 percent. A hybrid wet/dry cooling system could reduce water consumption by 32 to 58 percent.[138] A 2015 report by NREL noted that of the 24 operating CSP power plants in the US, 4 used dry cooling systems. The four dry-cooled systems were the three power plants at the Ivanpah Solar Power Facility near Barstow, California, and the Genesis Solar Energy Project in Riverside County, California. Of 15 CSP projects under construction or development in the US as of March 2015, 6 were wet systems, 7 were dry systems, 1 hybrid, and 1 unspecified.
In conclusion, I would say that however great the scientific importance of this discovery may be, its practical value will be no less obvious when we reflect that the supply of solar energy is both without limit and without cost, and that it will continue to pour down upon us for countless ages after all the coal deposits of the earth have been exhausted and forgotten.[36]

Setting up a solar electric system is easy. The new source of power will integrate seamlessly with your existing utilities. Apart from settimg up the solar energy equipment, there will be no need to reconfigure or rewire your home. Our offerings include several pre-engineered, packaged systems for both residential and commercial applications, so there’s sure to be something that fits the needs of your home or business. Most solar panels last about 30 years, which means you will see the benefits of this new source of energy for decades to come.

The primary obstacle that is preventing the large scale implementation of solar powered energy generation is the inefficiency of current solar technology. Currently, photovoltaic (PV) panels only have the ability to convert around 24% of the sunlight that hits them into electricity.[125] At this rate, solar energy still holds many challenges for widespread implementation, but steady progress has been made in reducing manufacturing cost and increasing photovoltaic efficiency. Both Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), have heavily funded solar research programs. The NREL solar program has a budget of around $75 million [126] and develops research projects in the areas of photovoltaic (PV) technology, solar thermal energy, and solar radiation.[127] The budget for Sandia’s solar division is unknown, however it accounts for a significant percentage of the laboratory’s $2.4 billion budget.[128] Several academic programs have focused on solar research in recent years. The Solar Energy Research Center (SERC) at University of North Carolina (UNC) has the sole purpose of developing cost effective solar technology. In 2008, researchers at Massachusetts Institute of Technology (MIT) developed a method to store solar energy by using it to produce hydrogen fuel from water.[129] Such research is targeted at addressing the obstacle that solar development faces of storing energy for use during nighttime hours when the sun is not shining. In February 2012, North Carolina-based Semprius Inc., a solar development company backed by German corporation Siemens, announced that they had developed the world’s most efficient solar panel. The company claims that the prototype converts 33.9% of the sunlight that hits it to electricity, more than double the previous high-end conversion rate.[130] Major projects on artificial photosynthesis or solar fuels are also under way in many developed nations.[131]
What is a small wind turbine? Anything under, say, 10 meters rotor diameter (30 feet) is well within the “small wind” category. That works out to wind turbines with a rated power up to around 20 kW (at 11 m/s, or 25 mph). For larger wind turbines the manufacturers are usually a little more honest, and more money is available to do a good site analysis. The information in this article is generic: The same applies to all the other brands and models, be they of the HAWT (Horizontal Axis Wind Turbine) or VAWT (Vertical Axis Wind Turbine) persuasion.
Low Temperature Geothermal[29] refers to the use of the outer crust of the earth as a Thermal Battery to facilitate Renewable thermal energy for heating and cooling buildings, and other refrigeration and industrial uses. In this form of Geothermal, a Geothermal Heat Pump and Ground-coupled heat exchanger are used together to move heat energy into the earth (for cooling) and out of the earth (for heating) on a varying seasonal basis. Low temperature Geothermal (generally referred to as "GHP") is an increasingly important renewable technology because it both reduces total annual energy loads associated with heating and cooling, and it also flattens the electric demand curve eliminating the extreme summer and winter peak electric supply requirements. Thus Low Temperature Geothermal/GHP is becoming an increasing national priority with multiple tax credit support[60] and focus as part of the ongoing movement toward Net Zero Energy.[61][30] New York City has even just passed a law[62] to require GHP anytime is shown to be economical with 20 year financing including the Socialized Cost of Carbon.[63][64]

The British Energy Savings Trust report titled “Location, location, location”: This requires some reading-between-the-lines as the Trust is rather closely aligned with the small wind industry. They looked at 57 turbines for a year, a number of them building mounted, others tower mounted, and concluded that building mounted turbines did very poorly.
Worldwide growth of photovoltaics has averaged 40% per year from 2000 to 2013[35] and total installed capacity reached 303 GW at the end of 2016 with China having the most cumulative installations (78 GW)[36] and Honduras having the highest theoretical percentage of annual electricity usage which could be generated by solar PV (12.5%).[36][35] The largest manufacturers are located in China.[37][38]
Even if you can’t directly purchase and install a solar system because you rent your home, have inadequate solar resources, or lack financing, you may still benefit from switching to solar electricity, and there numerous business models that make solar easier, cheaper, and more accessible. Options such as community or shared solar programs, solar leases, and power-purchase agreements allow millions of households to take advantage of solar energy. Learn about the various ways you can go solar.
As the cost of solar electricity has fallen, the number of grid-connected solar PV systems has grown into the millions and utility-scale solar power stations with hundreds of megawatts are being built. Solar PV is rapidly becoming an inexpensive, low-carbon technology to harness renewable energy from the Sun. The current largest photovoltaic power station in the world is the 850 MW Longyangxia Dam Solar Park, in Qinghai, China.