Green Energy Corp’s GreenBus® software interoperability platform enables the adoption of evolving Smart Grid technologies and integration with legacy power and communications infrastructures. Microgrid developers can now design and implement an architecture that supports advanced technology adoption over time, while realizing the business benefits incrementally.
Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18 percent of the country's automotive fuel. As a result of this, together with the exploitation of domestic deep water oil sources, Brazil, which years ago had to import a large share of the petroleum needed for domestic consumption, recently reached complete self-sufficiency in oil.[36][37][38]
Renewable energy variability is a problem for corporate buyers. But what is undesirable to buyers is attractive for insurance companies, whose core business revolves around managing weather-related risks. VFAs sit on top of a new or existing PPA and are effectively designed to pay the corporate buyer when they’re getting less renewable power than they contracted for, and give money to the insurer when there’s more.
Smart grid refers to a class of technology people are using to bring utility electricity delivery systems into the 21st century, using computer-based remote control and automation.[65] These systems are made possible by two-way communication technology and computer processing that has been used for decades in other industries. They are beginning to be used on electricity networks, from the power plants and wind farms all the way to the consumers of electricity in homes and businesses. They offer many benefits to utilities and consumers—mostly seen in big improvements in energy efficiency on the electricity grid and in the energy users’ homes and offices.[65]
Cleaner air and water: Burning fossil fuels releases greenhouse gases (GHG) into the atmosphere. GHG contribute to global climate change, rising sea levels and unpredictable weather patterns that can be costly in terms of human and economic losses. Burning fossil fuels also releases contaminants in to the air and water near the power generation source. Alternative energy sources can produce the same electricity in a greener way. You can shrink your carbon footprint, help curb climate change and reduce air and water pollution when you choose renewable electricity.

For either photovoltaic or thermal systems, one option is to loft them into space, particularly Geosynchronous orbit. To be competitive with Earth-based solar power systems, the specific mass (kg/kW) times the cost to loft mass plus the cost of the parts needs to be $2400 or less. I.e., for a parts cost plus rectenna of $1100/kW, the product of the $/kg and kg/kW must be $1300/kW or less.[190] Thus for 6.5 kg/kW, the transport cost cannot exceed $200/kg. While that will require a 100 to one reduction, SpaceX is targeting a ten to one reduction, Reaction Engines may make a 100 to one reduction possible.

Turbines used in residential applications can range in size from 400 Watts to 100 kW (100 kW for very large loads), depending on the amount of electricity you want to generate. For residential applications, you should establish an energy budget and see whether financial incentives are available. This information will help determine the turbine size you will need. Because energy efficiency is usually less expensive than energy production, making your house more energy efficient will probably be more cost effective and will reduce the size of the wind turbine you need (see How Can I Make My Home More Energy Efficient?). Wind turbine manufacturers, dealers, and installers can help you size your system based on your electricity needs and the specifics of your local wind resource and micro-siting.

For a 6 kW wind turbine to produce that much energy per average year, you need an annual average wind speed of close to 5 m/s (11 mph) blowing at turbine hub height. It may not sound like much, but that is a reasonably windy place. Much of North America does not have that much wind at 100′ or below. Keep in mind, you need that much wind just to break even in energy production vs. solar. To outweigh the disadvantages of small turbines you better have more!
Hydro-electricity and geothermal electricity produced at favourable sites are now the cheapest way to generate electricity. Renewable energy costs continue to drop, and the levelised cost of electricity (LCOE) is declining for wind power, solar photovoltaic (PV), concentrated solar power (CSP) and some biomass technologies.[100] Renewable energy is also the most economic solution for new grid-connected capacity in areas with good resources. As the cost of renewable power falls, the scope of economically viable applications increases. Renewable technologies are now often the most economic solution for new generating capacity. Where "oil-fired generation is the predominant power generation source (e.g. on islands, off-grid and in some countries) a lower-cost renewable solution almost always exists today".[100] A series of studies by the US National Renewable Energy Laboratory modeled the "grid in the Western US under a number of different scenarios where intermittent renewables accounted for 33 percent of the total power." In the models, inefficiencies in cycling the fossil fuel plants to compensate for the variation in solar and wind energy resulted in an additional cost of "between $0.47 and $1.28 to each MegaWatt hour generated"; however, the savings in the cost of the fuels saved "adds up to $7 billion, meaning the added costs are, at most, two percent of the savings."[101]
The typical cost factors for solar power include the costs of the modules, the frame to hold them, wiring, inverters, labour cost, any land that might be required, the grid connection, maintenance and the solar insolation that location will receive. Adjusting for inflation, it cost $96 per watt for a solar module in the mid-1970s. Process improvements and a very large boost in production have brought that figure down to 68 cents per watt in February 2016, according to data from Bloomberg New Energy Finance.[69] Palo Alto California signed a wholesale purchase agreement in 2016 that secured solar power for 3.7 cents per kilowatt-hour. And in sunny Dubai large-scale solar generated electricity sold in 2016 for just 2.99 cents per kilowatt-hour – "competitive with any form of fossil-based electricity — and cheaper than most."[70]
If you want to purchase a rooftop solar system for your home, federal tax credits and other state, local, or utility incentives can offset some of the upfront cost. There are also several financing options available for homeowners, including energy-saving mortgages, home equity, Property Assessed Clean Energy Loans, and more traditional bank loans.
The most common type of residential solar is called solar PV. The PV stands for “photovoltaic,” and a solar PV system is a electrical system that consists of solar panels, an inverter, a meter, and a few other components (mounting, cabling, etc.). A solar PV system requires little to no maintenance for years, and if you’re in a place with the right amount of sunlight, you can end up saving money, while also going green.
By participating in a green energy program a consumer may be having an effect on the energy sources used and ultimately might be helping to promote and expand the use of green energy. They are also making a statement to policy makers that they are willing to pay a price premium to support renewable energy. Green energy consumers either obligate the utility companies to increase the amount of green energy that they purchase from the pool (so decreasing the amount of non-green energy they purchase), or directly fund the green energy through a green power provider. If insufficient green energy sources are available, the utility must develop new ones or contract with a third party energy supplier to provide green energy, causing more to be built. However, there is no way the consumer can check whether or not the electricity bought is "green" or otherwise.
Green-e is a voluntary certification program for renewable electricity products. The Green-e program establishes consumer protection and environmental standards for electricity products, and verifies that these products meet the standards. The Green-e logo certifies that at least half the power supplied is from renewable sources. Many products will carry the Green-e logo, and the best way to find the most environmentally sensitive providers is by doing some comparison research. To find out which Green-e certified products are available in your state, visit Green-e's electric choices page. Questions about particular providers can be directed to the Center for Resources Solutions, which administers the Green-e program, at (415) 561-2100.

Green energy, however, utilizes energy sources that are readily available all over the world, including in rural and remote areas that don't otherwise have access to electricity. Advances in renewable energy technologies have lowered the cost of solar panels, wind turbines and other sources of green energy, placing the ability to produce electricity in the hands of the people rather than those of oil, gas, coal and utility companies.

Energy storage is a collection of methods used to store electrical energy on an electrical power grid, or off it. Electrical energy is stored during times when production (especially from intermittent power plants such as renewable electricity sources such as wind power, tidal power, solar power) exceeds consumption, and returned to the grid when production falls below consumption. Pumped-storage hydroelectricity is used for more than 90% of all grid power storage. Costs of lithium ion batteries are dropping rapidly, and are increasingly being deployed as fast acting sources of grid power (i.e. operating reserve) and for domestic storage.

The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of Renewable Energy. It should be noted, however, that papers are within scope only if they are concerned with power generation and that the power is generated in a renewable or sustainable way. For instance, a paper concerning development and characterisation of a material for use in a renewable energy system, without any measure of the energy that this new material will convert, would be out of scope.

As of 2018, American electric utility companies are planning new or extra renewable energy investments. These investments are particularly aimed at solar energy, thanks to the Tax Cuts and Jobs Act of 2017 being signed into law. The law retained incentives for renewable energy development. Utility companies are taking advantage of the federal solar investment tax credit before it permanently goes down to 10% after 2021. According to the March 28 S&P Global Market Intelligence report summary, "NextEra Energy Inc., Duke Energy Corp., and Dominion Energy Inc.’s utilities are among a number of companies in the sector contemplating significant solar investments in the near-term. Other companies, including Xcel Energy Inc. and Alliant Energy Corp., are undertaking large wind projects in the near-term, but are considering ramping up solar investments in the coming years."[96]

Solar thermal power stations have been successfully operating in California commercially since the late 1980s, including the largest solar power plant of any kind, the 350 MW Solar Energy Generating Systems. Nevada Solar One is another 64MW plant which has recently opened.[34] Other parabolic trough power plants being proposed are two 50MW plants in Spain, and a 100MW plant in Israel.[35]
✅ FEATURES: Integrated automatic braking system to protect from sudden and high wind speed. Easy DIY installation methods with all materials provided. Can be used in conjunction with solar panels. MPPT Maximum power point tracking built into the wind turbine generator. Made with high quality Polypropylene and Glass Fiber material with a weather resistant seal.
Markets for second-generation technologies are strong and growing, but only in a few countries. The challenge is to broaden the market base for continued growth worldwide. Strategic deployment in one country not only reduces technology costs for users there, but also for those in other countries, contributing to overall cost reductions and performance improvement.
The International Energy Agency projected in 2014 that under its "high renewables" scenario, by 2050, solar photovoltaics and concentrated solar power would contribute about 16 and 11 percent, respectively, of the worldwide electricity consumption, and solar would be the world's largest source of electricity. Most solar installations would be in China and India.[2] In 2017, solar power provided 1.7% of total worldwide electricity production, growing at 35% per annum.[3]