Concentrating solar power plants with wet-cooling systems, on the other hand, have the highest water-consumption intensities of any conventional type of electric power plant; only fossil-fuel plants with carbon-capture and storage may have higher water intensities.[135] A 2013 study comparing various sources of electricity found that the median water consumption during operations of concentrating solar power plants with wet cooling was 810 ga/MWhr for power tower plants and 890 gal/MWhr for trough plants. This was higher than the operational water consumption (with cooling towers) for nuclear (720 gal/MWhr), coal (530 gal/MWhr), or natural gas (210).[134] A 2011 study by the National Renewable Energy Laboratory came to similar conclusions: for power plants with cooling towers, water consumption during operations was 865 gal/MWhr for CSP trough, 786 gal/MWhr for CSP tower, 687 gal/MWhr for coal, 672 gal/MWhr for nuclear, and 198 gal/MWhr for natural gas.[136] The Solar Energy Industries Association noted that the Nevada Solar One trough CSP plant consumes 850 gal/MWhr.[137] The issue of water consumption is heightened because CSP plants are often located in arid environments where water is scarce.
 ★【Excellence Performance】Wind Turbine, Nylon fiber blades,rated power:600W ★【Scientific Design】Using reinforced fiberglass on wind wheel blades and the aerodynamic lantern shape design, the coefficient of wind energy utilisation is increased, so as increased annual electricity generation capacity. ★【Low Noise】Low start up wind speed, high efficiency, small size, low vibration ★【Premium Material】The shell is made of aluminum alloy die-casting, with double bearing carrier, anti-typhoon capacity is stronger, safe and reliable operation. Easy installation, low maintenance.
“California Looks to Stationary Energy Storage as a Solution to Peaker Plants” • Central California electric utility Pacific Gas & Electric is planning to replace three old natural gas power plants in its network with stationary energy storage installations from Tesla. California is looking to add 1.3 GW of storage to its power grid by 2020. [CleanTechnica]
The life-cycle greenhouse-gas emissions of solar power are in the range of 22 to 46 gram (g) per kilowatt-hour (kWh) depending on if solar thermal or solar PV is being analyzed, respectively. With this potentially being decreased to 15 g/kWh in the future.[121] For comparison (of weighted averages), a combined cycle gas-fired power plant emits some 400–599 g/kWh,[122] an oil-fired power plant 893 g/kWh,[122] a coal-fired power plant 915–994 g/kWh[123] or with carbon capture and storage some 200 g/kWh, and a geothermal high-temp. power plant 91–122 g/kWh.[122] The life cycle emission intensity of hydro, wind and nuclear power are lower than solar's as of 2011 as published by the IPCC, and discussed in the article Life-cycle greenhouse-gas emissions of energy sources. Similar to all energy sources were their total life cycle emissions primarily lay in the construction and transportation phase, the switch to low carbon power in the manufacturing and transportation of solar devices would further reduce carbon emissions. BP Solar owns two factories built by Solarex (one in Maryland, the other in Virginia) in which all of the energy used to manufacture solar panels is produced by solar panels. A 1-kilowatt system eliminates the burning of approximately 170 pounds of coal, 300 pounds of carbon dioxide from being released into the atmosphere, and saves up to 105 gallons of water consumption monthly.[124]
On most horizontal wind turbine farms, a spacing of about 6–10 times the rotor diameter is often upheld. However, for large wind farms distances of about 15 rotor diameters should be more economical, taking into account typical wind turbine and land costs. This conclusion has been reached by research[62] conducted by Charles Meneveau of the Johns Hopkins University,[63] and Johan Meyers of Leuven University in Belgium, based on computer simulations[64] that take into account the detailed interactions among wind turbines (wakes) as well as with the entire turbulent atmospheric boundary layer.
A more reliable grid: Even if we're not ready to completely transition to renewable energy sources of power, supplementing the grid with green electricity helps increase grid reliability. You can also produce your own green electricity by installing solar panels or wind turbines at home. If the grid goes down for some reason, you may be able to keep your power on using your on-site renewable power generation system.

In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries' energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared".[49] Italy has the largest proportion of solar electricity in the world, in 2015 solar supplied 7.8% of electricity demand in Italy.[54] In 2016, after another year of rapid growth, solar generated 1.3% of global power.[55]
Outline of energy Energy Units Conservation of energy Energetics Energy transformation Energy condition Energy transition Energy level Energy system Mass Negative mass Mass–energy equivalence Power Thermodynamics Quantum thermodynamics Laws of thermodynamics Thermodynamic system Thermodynamic state Thermodynamic potential Thermodynamic free energy Irreversible process Thermal reservoir Heat transfer Heat capacity Volume (thermodynamics) Thermodynamic equilibrium Thermal equilibrium Thermodynamic temperature Isolated system Entropy Free entropy Entropic force Negentropy Work Exergy Enthalpy
A heat pump is a device that provides heat energy from a source of heat to a destination called a "heat sink". Heat pumps are designed to move thermal energy opposite to the direction of spontaneous heat flow by absorbing heat from a cold space and releasing it to a warmer one. A solar-assisted heat pump represents the integration of a heat pump and thermal solar panels in a single integrated system. Typically these two technologies are used separately (or only placing them in parallel) to produce hot water.[180] In this system the solar thermal panel performs the function of the low temperature heat source and the heat produced is used to feed the heat pump's evaporator.[181] The goal of this system is to get high COP and then produce energy in a more efficient and less expensive way.
As of 2014, offshore wind power amounted to 8,771 megawatt of global installed capacity. Although offshore capacity doubled within three years (from 4,117 MW in 2011), it accounted for only 2.3% of the total wind power capacity. The United Kingdom is the undisputed leader of offshore power with half of the world's installed capacity ahead of Denmark, Germany, Belgium and China.

Our largest solar panel. Portable rugged and powerful. Our largest solar panel. Portable rugged and powerful. Designed for mobile base camps and die-hard adventurers a standard MC4 connector for third-party charge controllers and built-in charging cable for Sherpa Power Packs and Goal Zero Yeti Solar Generators. Can be chained in series or parallel to collect more power from ...  More + Product Details Close


In 2007, the US Congress directed the Department of Energy to report on ways to reduce water consumption by CSP. The subsequent report noted that dry cooling technology was available that, although more expensive to build and operate, could reduce water consumption by CSP by 91 to 95 percent. A hybrid wet/dry cooling system could reduce water consumption by 32 to 58 percent.[138] A 2015 report by NREL noted that of the 24 operating CSP power plants in the US, 4 used dry cooling systems. The four dry-cooled systems were the three power plants at the Ivanpah Solar Power Facility near Barstow, California, and the Genesis Solar Energy Project in Riverside County, California. Of 15 CSP projects under construction or development in the US as of March 2015, 6 were wet systems, 7 were dry systems, 1 hybrid, and 1 unspecified.
The expansion is thanks largely to innovation on the policy front, which has opened up opportunities in regulated electricity markets. The number of corporate renewable energy deals signed under utility green tariff programs continues to grow, representing around 25 percent of corporate renewables procurement so far this year. At the same time, utilities are incorporating corporate renewables into their long-term planning — and thinking about solutions beyond green tariffs to better meet the needs of existing corporate customers and smaller loads.
Most small wind turbines do not perform quite as well as their manufacturers want you to believe. That should come as no surprise at this point. What may be surprising is that even the turbines of the more honourable manufacturers that are honest about performance fall short, more often than not. The likely cause is turbulence and improper site selection.
The W03083 Firman generator is perfect in and The W03083 Firman generator is perfect in and around the RV on the campsite while powering small appliances or while at home. Its Fuel Economy Mode reduces fuel consumption and promotes engine efficiency. It uses an OHV electric start engine (Max-Pro Series) for longer life higher performance and lower maintenance. ...  More + Product Details Close
SquareTrade Protection Plans are only valid for new or Amazon certified refurbished products purchased at Amazon in the last 30 days. By purchasing this Protection Plan you agree to the Protection Plan Terms & Conditions (http://www.squaretrade.com/terms-standard). Your Protection Plan Terms & Conditions will be delivered via email within 24 hours of purchase

Even if you can’t directly purchase and install a solar system because you rent your home, have inadequate solar resources, or lack financing, you may still benefit from switching to solar electricity, and there numerous business models that make solar easier, cheaper, and more accessible. Options such as community or shared solar programs, solar leases, and power-purchase agreements allow millions of households to take advantage of solar energy. Learn about the various ways you can go solar.
Index of solar energy articles List of concentrating solar thermal power companies List of photovoltaics companies List of photovoltaic power stations List of pioneering solar buildings List of rooftop photovoltaic installations List of solar car teams List of solar powered products List of solar thermal power stations People associated with solar power
A: Modern solar panels typically last twenty to thirty years before there’s a noticeable increase in output loss. Most residential solar providers offer a 20- to 25-year warranty, but many such warranties only guarantee a certain power output (e.g., a guarantee of 80% output for twenty years). Carefully read through the fine print to make sure you understand the warranty and what it covers.

With our 7 to 11 blade models, you'll get power generation in low wind areas. Regions and locations with high wind speeds are perfect for 3 to 5 blade configurations. No matter your location, we have the ideal wind turbine and blade set combination for you! Feel free to contact one of our many sales associates or technicians to get you started, to improve an existing setup, or to further your project.
The use of a gearbox allows for better matching of the generator speed to that of the turbine but the disadvantage of using a gearbox is that as a mechanical component it is subjected to wear and tear reducing the efficiency of the system. Direct drive however may be more simple and efficient, but the generators rotor shaft and bearings are subjected to the full weight and rotational force of the rotor blades.
Airflows can be used to run wind turbines. Modern utility-scale wind turbines range from around 600 kW to 5 MW of rated power, although turbines with rated output of 1.5–3 MW have become the most common for commercial use. The largest generator capacity of a single installed onshore wind turbine reached 7.5 MW in 2015. The power available from the wind is a function of the cube of the wind speed, so as wind speed increases, power output increases up to the maximum output for the particular turbine.[42] Areas where winds are stronger and more constant, such as offshore and high altitude sites, are preferred locations for wind farms. Typically full load hours of wind turbines vary between 16 and 57 percent annually, but might be higher in particularly favorable offshore sites.[43]

Wind energy research dates back several decades to the 1970s when NASA developed an analytical model to predict wind turbine power generation during high winds.[136] Today, both Sandia National Laboratories and National Renewable Energy Laboratory have programs dedicated to wind research. Sandia’s laboratory focuses on the advancement of materials, aerodynamics, and sensors.[137] The NREL wind projects are centered on improving wind plant power production, reducing their capital costs, and making wind energy more cost effective overall.[138] The Field Laboratory for Optimized Wind Energy (FLOWE) at Caltech was established to research renewable approaches to wind energy farming technology practices that have the potential to reduce the cost, size, and environmental impact of wind energy production.[139] The president of Sky WindPower Corporation thinks that wind turbines will be able to produce electricity at a cent/kWh at an average which in comparison to coal-generated electricity is a fractional of the cost.[140]
We harness the earth’s most abundant resources – the strength of the wind, the heat of the sun and the force of water – to power the world’s biggest economies and the most remote communities. Combining onshore and offshore wind, hydro and innovative technologies, GE Renewable Energy has installed more than 400+ gigawatts capacity globally to make the world work better and cleaner.
As suppliers of inverters for turbines good, bad, and just plain ugly, we have pretty well seen it all when it comes to turbine failure. We can tell you unequivocally that you get what you pay for. Depending on your sense of adventure that can be good or bad; if you plan to go cheap, plan on (you) being the manufacturer’s R&D department and test center. Being a really good do-it-yourselfer with an understanding of wind turbines, alternators, and all things electric will come in very handy too. Just in case you do not believe us, you can read about it in this Green Power Talk thread. There are more threads with similar content on the forum, just browse around a little.

The windwheel of Hero of Alexandria (10 AD – 70 AD) marks one of the first recorded instances of wind powering a machine in history.[2][3] However, the first known practical wind power plants were built in Sistan, an Eastern province of Persia (now Iran), from the 7th century. These "Panemone" were vertical axle windmills, which had long vertical drive shafts with rectangular blades.[4] Made of six to twelve sails covered in reed matting or cloth material, these windmills were used to grind grain or draw up water, and were used in the gristmilling and sugarcane industries.[5]


As of 2018, American electric utility companies are planning new or extra renewable energy investments. These investments are particularly aimed at solar energy, thanks to the Tax Cuts and Jobs Act of 2017 being signed into law. The law retained incentives for renewable energy development. Utility companies are taking advantage of the federal solar investment tax credit before it permanently goes down to 10% after 2021. According to the March 28 S&P Global Market Intelligence report summary, "NextEra Energy Inc., Duke Energy Corp., and Dominion Energy Inc.’s utilities are among a number of companies in the sector contemplating significant solar investments in the near-term. Other companies, including Xcel Energy Inc. and Alliant Energy Corp., are undertaking large wind projects in the near-term, but are considering ramping up solar investments in the coming years."[96]
Several initiatives are being proposed to mitigate distribution problems. First and foremost, the most effective way to reduce USA’s CO2 emissions and slow global warming is through conservation efforts. Opponents of the current US electrical grid have also advocated for decentralizing the grid. This system would increase efficiency by reducing the amount of energy lost in transmission. It would also be economically viable as it would reduce the amount of power lines that will need to be constructed in the future to keep up with demand. Merging heat and power in this system would create added benefits and help to increase its efficiency by up to 80-90%. This is a significant increase from the current fossil fuel plants which only have an efficiency of 34%.[92]
He was able to begin installation sooner than promised. The finished product looks great. The exterior industrial grade electrical work they did looks stylish. The workers kept a clean job site and fully cleaned up, leaving my place neater than before they began. The workers were knowledgeable and helpful. Other than wishing that it was free, I don't know what they could have done better. I give them my highest recommendation because of a job superbly done.... read more
There have been "not in my back yard" (NIMBY) concerns relating to the visual and other impacts of some wind farms, with local residents sometimes fighting or blocking construction.[192] In the United States, the Massachusetts Cape Wind project was delayed for years partly because of aesthetic concerns. However, residents in other areas have been more positive. According to a town councilor, the overwhelming majority of locals believe that the Ardrossan Wind Farm in Scotland has enhanced the area.[193]
Artificial photosynthesis uses techniques including nanotechnology to store solar electromagnetic energy in chemical bonds by splitting water to produce hydrogen and then using carbon dioxide to make methanol.[182] Researchers in this field are striving to design molecular mimics of photosynthesis that utilize a wider region of the solar spectrum, employ catalytic systems made from abundant, inexpensive materials that are robust, readily repaired, non-toxic, stable in a variety of environmental conditions and perform more efficiently allowing a greater proportion of photon energy to end up in the storage compounds, i.e., carbohydrates (rather than building and sustaining living cells).[183] However, prominent research faces hurdles, Sun Catalytix a MIT spin-off stopped scaling up their prototype fuel-cell in 2012, because it offers few savings over other ways to make hydrogen from sunlight.[184]
Wind turbines need wind to produce energy. That message seems lost, not only on most small wind turbine owners, but also on many manufacturers and installers of said devices. One of the world’s largest manufacturers of small wind turbines, located in the USA (now bankrupt by the way, though their turbines are still sold), markets their flag-ship machine with a 12 meter (36 feet) tower. Their dealers are trained to tell you it will produce 60% of your electricity bill. If you are one of those that is convinced the earth is flat, this is the turbine for you!
The stator is the “stationary” (hence its name) part of the machine and can have either a set of electrical windings producing an electromagnet or a set of permanent magnets within its design. The rotor is the part of the machine that “rotates”. Again, the rotor can have output coils that rotate or permanent magnets. Generally, generators and alternators used for wind turbine generators are defined by how they make generate their magnetism, either electromagnets or permanent magnets.
Concentrating solar power plants with wet-cooling systems, on the other hand, have the highest water-consumption intensities of any conventional type of electric power plant; only fossil-fuel plants with carbon-capture and storage may have higher water intensities.[135] A 2013 study comparing various sources of electricity found that the median water consumption during operations of concentrating solar power plants with wet cooling was 810 ga/MWhr for power tower plants and 890 gal/MWhr for trough plants. This was higher than the operational water consumption (with cooling towers) for nuclear (720 gal/MWhr), coal (530 gal/MWhr), or natural gas (210).[134] A 2011 study by the National Renewable Energy Laboratory came to similar conclusions: for power plants with cooling towers, water consumption during operations was 865 gal/MWhr for CSP trough, 786 gal/MWhr for CSP tower, 687 gal/MWhr for coal, 672 gal/MWhr for nuclear, and 198 gal/MWhr for natural gas.[136] The Solar Energy Industries Association noted that the Nevada Solar One trough CSP plant consumes 850 gal/MWhr.[137] The issue of water consumption is heightened because CSP plants are often located in arid environments where water is scarce.

Many of the largest operational onshore wind farms are located in the USA and China. The Gansu Wind Farm in China has over 5,000 MW installed with a goal of 20,000 MW by 2020. China has several other "wind power bases" of similar size. The Alta Wind Energy Center in California is the largest onshore wind farm outside of China, with a capacity of 1020 MW of power.[141] Europe leads in the use of wind power with almost 66 GW, about 66 percent of the total globally, with Denmark in the lead according to the countries installed per-capita capacity.[142] As of February 2012, the Walney Wind Farm in United Kingdom is the largest offshore wind farm in the world at 367 MW, followed by Thanet Wind Farm (300 MW), also in the UK.


If you can turn a wrench and operate an electric drill, you can build this simple generator in two days: one day for chasing down parts, and one day for assembling the components. The four major components include a vehicle alternator with a built-in voltage regulator, a General Motors (GM) fan and clutch assembly (I used one from a 1988 GM 350 motor), a tower or pole on which to mount the generator (15 feet of used 2-inch tubing cost me $20), and the metal to build a bracket for mounting the generator on the tower or pole. If you’re a Ford guy or a Mopar gal, that’s fine — just make sure your alternator has a built-in voltage regulator. You’ll also need some electrical cable or wires to hook the alternator up to your storage batteries. I used 8-gauge, 3-conductor cable pilfered from the oil patch. (And they said the transition from fossil fuels to renewables would take years. Pfft!)
The most significant barriers to the widespread implementation of large-scale renewable energy and low carbon energy strategies are primarily political and not technological. According to the 2013 Post Carbon Pathways report, which reviewed many international studies, the key roadblocks are: climate change denial, the fossil fuels lobby, political inaction, unsustainable energy consumption, outdated energy infrastructure, and financial constraints.[155]
For a 6 kW wind turbine to produce that much energy per average year, you need an annual average wind speed of close to 5 m/s (11 mph) blowing at turbine hub height. It may not sound like much, but that is a reasonably windy place. Much of North America does not have that much wind at 100′ or below. Keep in mind, you need that much wind just to break even in energy production vs. solar. To outweigh the disadvantages of small turbines you better have more!

The tables above are for HAWTs, the regular horizontal “wind mill” type we are all familiar with. For VAWTs the tables can be used as well, but you have to convert their dimensions. Calculate the frontal area (swept area) of the VAWT by multiplying height and width, or for a curved egg-beater approximate the area. Now convert the surface area to a diameter, as if it were a circle: Diameter = √(4 • Area / Pi). That will give you a diameter for the table. Look up the energy production for that diameter and your average annual wind speed and do the following:
These high strength magnets are usually made from rare earth materials such as neodymium iron (NdFe), or samarium cobalt (SmCo) eliminating the need for the field windings to provide a constant magnetic field, leading to a simpler, more rugged construction. Wound field windings have the advantage of matching their magnetism (and therefore power) with the varying wind speed but require an external energy source to generate the required magnetic field.

You will find links to pictures that I have published of home wind Generator rooftop system installations done recently. Some are featured in newspaper articles and so forth. WindEnergy7 LLC has invented and filed for patents on a few of the technologies that make home rooftop wind Generators feasible. We have been busy training and supporting owners and dealers from California to New Jersey over the past couple of years to expand our network of local home wind Generator dealers.
Green energy, however, utilizes energy sources that are readily available all over the world, including in rural and remote areas that don't otherwise have access to electricity. Advances in renewable energy technologies have lowered the cost of solar panels, wind turbines and other sources of green energy, placing the ability to produce electricity in the hands of the people rather than those of oil, gas, coal and utility companies.
The waste we generate ends up in landfills, where it decomposes and produces landfill gas made of approximately 50 percent methane. This gas can be captured and used to fuel electric generators. Since large landfills must burn off this gas to reduce the hazards arising from gas buildup, this method of renewable energy is one of the most successful.
Photovoltaic systems use no fuel, and modules typically last 25 to 40 years. Thus, capital costs make up most of the cost of solar power. Operations and maintenance costs for new utility-scale solar plants in the US are estimated to be 9 percent of the cost of photovoltaic electricity, and 17 percent of the cost of solar thermal electricity.[71] Governments have created various financial incentives to encourage the use of solar power, such as feed-in tariff programs. Also, Renewable portfolio standards impose a government mandate that utilities generate or acquire a certain percentage of renewable power regardless of increased energy procurement costs. In most states, RPS goals can be achieved by any combination of solar, wind, biomass, landfill gas, ocean, geothermal, municipal solid waste, hydroelectric, hydrogen, or fuel cell technologies.[72]
×