Thermal storage technologies allow heat or cold to be stored for periods of time ranging from hours or overnight to interseasonal, and can involve storage of sensible energy (i.e. by changing the temperature of a medium) or latent energy (i.e. through phase changes of a medium, such between water and slush or ice). Short-term thermal storages can be used for peak-shaving in district heating or electrical distribution systems. Kinds of renewable or alternative energy sources that can be enabled include natural energy (e.g. collected via solar-thermal collectors, or dry cooling towers used to collect winter's cold), waste energy (e.g. from HVAC equipment, industrial processes or power plants), or surplus energy (e.g. as seasonally from hydropower projects or intermittently from wind farms). The Drake Landing Solar Community (Alberta, Canada) is illustrative. borehole thermal energy storage allows the community to get 97% of its year-round heat from solar collectors on the garage roofs, which most of the heat collected in summer.[58][59] Types of storages for sensible energy include insulated tanks, borehole clusters in substrates ranging from gravel to bedrock, deep aquifers, or shallow lined pits that are insulated on top. Some types of storage are capable of storing heat or cold between opposing seasons (particularly if very large), and some storage applications require inclusion of a heat pump. Latent heat is typically stored in ice tanks or what are called phase-change materials (PCMs).
Coal is our dirtiest source of energy. It releases more harmful pollutants into the atmosphere than any other energy source and produces a quarter of the nation’s global warming emissions. If we are going to effectively reduce air pollution and address global warming, we need to shut down the oldest, dirtiest coal plants—and not build new ones to replace them.
Another economic measure, closely related to the energy payback time, is the energy returned on energy invested (EROEI) or energy return on investment (EROI),[131] which is the ratio of electricity generated divided by the energy required to build and maintain the equipment. (This is not the same as the economic return on investment (ROI), which varies according to local energy prices, subsidies available and metering techniques.) With expected lifetimes of 30 years,[132] the EROEI of PV systems are in the range of 10 to 30, thus generating enough energy over their lifetimes to reproduce themselves many times (6–31 reproductions) depending on what type of material, balance of system (BOS), and the geographic location of the system.[133]
These include E-glass/carbon, E-glass/aramid and they present an exciting alternative to pure glass or carbon reinforcements. that the full replacement would lead to 80% weight savings, and cost increase by 150%, while a partial (30%) replacement would lead to only 90% cost increase and 50% weight reduction for 8 m turbine. The world currently longest wind turbine rotor blade, the 88.4 m long blade from LM Wind Power is made of carbon/glass hybrid composites. However, additional investigations are required for the optimal composition of the materials [50]
Although not permitted under the US National Electric Code, it is technically possible to have a “plug and play” PV microinverter. A recent review article found that careful system design would enable such systems to meet all technical, though not all safety requirements.[112] There are several companies selling plug and play solar systems available on the web, but there is a concern that if people install their own it will reduce the enormous employment advantage solar has over fossil fuels.[113]
Current Texas solar incentives include generous rebates for solar electric and solar hot water systems.  When combined with Federal solar rebates your solar panel installation will be approximately 50% less because of the incentives!  Our solar installers will be happy to answer your questions and explain the benefits of solar power.  Simply click the image below, fill in the form, and a certified solar installer will contact you by phone at your convenience.
In 2004, the German government introduced the first large-scale feed-in tariff system, under the German Renewable Energy Act, which resulted in explosive growth of PV installations in Germany. At the outset the FIT was over 3x the retail price or 8x the industrial price. The principle behind the German system is a 20-year flat rate contract. The value of new contracts is programmed to decrease each year, in order to encourage the industry to pass on lower costs to the end users. The programme has been more successful than expected with over 1GW installed in 2006, and political pressure is mounting to decrease the tariff to lessen the future burden on consumers.
Shi Zhengrong has said that, as of 2012, unsubsidised solar power is already competitive with fossil fuels in India, Hawaii, Italy and Spain. He said "We are at a tipping point. No longer are renewable power sources like solar and wind a luxury of the rich. They are now starting to compete in the real world without subsidies". "Solar power will be able to compete without subsidies against conventional power sources in half the world by 2015".[75]
Other renewable energy technologies are still under development, and include cellulosic ethanol, hot-dry-rock geothermal power, and marine energy.[156] These technologies are not yet widely demonstrated or have limited commercialization. Many are on the horizon and may have potential comparable to other renewable energy technologies, but still depend on attracting sufficient attention and research, development and demonstration (RD&D) funding.[156]
Technologies promote sustainable energy including renewable energy sources, such as hydroelectricity, solar energy, wind energy, wave power,[citation needed] geothermal energy, bioenergy, tidal power and also technologies designed to improve energy efficiency. Costs have decreased immensely throughout the years, and continue to fall. Increasingly, effective government policies support investor confidence and these markets are expanding. Considerable progress is being made in the energy transition from fossil fuels to ecologically sustainable systems, to the point where many studies support 100% renewable energy.
Wind power - Air flow on the earth's surface can be used to push turbines, with stronger winds producing more energy. High-altitude sites and areas just offshore tend to provide the best conditions for capturing the strongest winds. According to a 2009 study, a network of land-based, 2.5-megawatt wind turbines in rural areas operating at just 20% of their rated capacity could supply 40 times the current worldwide consumption of energy.
“Volkswagen Converting Zwickau Automotive Plant to Produce Electric Vehicles” • In a move that it believes is the first of its kind in the world for a major car factory, VW is converting its auto factory in Zwickau, Germany from internal combustion vehicle production to manufacture of electric vehicles. The plant makes 330,000 cars per year. [CleanTechnica]
Biofuels - Rather than burning biomass to produce energy, sometimes these renewable organic materials are transformed into fuel. Notable examples include ethanol and biodiesel. Biofuels provided 2.7 percent of the world's fuels for road transport in 2010, and have the potential to meet more than 25 percent of world demand for transportation fuels by 2050.
Where the reputable, and more expensive manufacturers are good in honouring their warranties, you are likely on your own with the cheap stuff. Even with a good warranty, take our word for it that you would much rather not make use of it. Even if the manufacturer supplies replacement parts, it is still expensive to install them. Not to mention that your turbine will not be making energy meanwhile.
Wind turbines need wind. Not just any wind, but the nicely flowing, smooth, laminar kind. That cannot be found at 30 feet height. It can usually not be found at 60 feet. Sometimes you find it at 80 feet. More often than not it takes 100 feet of tower to get there. Those towers cost as much or more, installed, as the turbine itself. How much tower you need for a wind turbine to live up to its potential depends on your particular site; on the trees and structures around it etc. Close to the ground the wind is turbulent, and makes a poor fuel for a small wind turbine.
Biomass, biogas and biofuels are burned to produce heat/power and in doing so harm the environment. Pollutants such as sulphurous oxides (SOx), nitrous oxides (NOx), and particulate matter (PM) are produced from the combustion of biomass; the World Health Organisation estimates that 7 million premature deaths are caused each year by air pollution.[77] Biomass combustion is a major contributor.[77][78][79]
In terms of ocean energy, another third-generation technology, Portugal has the world's first commercial wave farm, the Aguçadora Wave Park, under construction in 2007. The farm will initially use three Pelamis P-750 machines generating 2.25 MW.[44][45] and costs are put at 8.5 million euro. Subject to successful operation, a further 70 million euro is likely to be invested before 2009 on a further 28 machines to generate 525 MW.[46] Funding for a wave farm in Scotland was announced in February, 2007 by the Scottish Executive, at a cost of over 4 million pounds, as part of a £13 million funding packages for ocean power in Scotland. The farm will be the world's largest with a capacity of 3 MW generated by four Pelamis machines.[47] (see also Wave farm).
Conventional hydroelectricity works very well in conjunction with solar power, water can be held back or released from a reservoir behind a dam as required. Where a suitable river is not available, pumped-storage hydroelectricity uses solar power to pump water to a high reservoir on sunny days then the energy is recovered at night and in bad weather by releasing water via a hydroelectric plant to a low reservoir where the cycle can begin again.[109] However, this cycle can lose 20% of the energy to round trip inefficiencies, this plus the construction costs add to the expense of implementing high levels of solar power.
The trouble with rated power is that it does not tell you anything about energy production. Your utility company charges you for the energy you consume, not power. Likewise, for a small wind  turbine you should be interested in the energy it will produce, for your particular site, with your particular annual average wind speed. Rated power of the turbine does not do that. To find out about energy production take a look at the tables presented earlier.

The energy it calculates is in kWh per year, the diameter of the wind turbine rotor is in meters, the wind speed is annual average for the turbine hub height in m/s. The equation uses a Weibull wind distribution with a factor of K=2, which is about right for inland sites. An overall efficiency of the turbine, from wind to electrical grid, of 30% is used. That is a reasonable, real-world efficiency number. Here is a table that shows how average annual wind speed, turbine size, and annual energy production relate:
Subsequently, Spain, Italy, Greece—that enjoyed an early success with domestic solar-thermal installations for hot water needs—and France introduced feed-in tariffs. None have replicated the programmed decrease of FIT in new contracts though, making the German incentive relatively less and less attractive compared to other countries. The French and Greek FIT offer a high premium (EUR 0.55/kWh) for building integrated systems. California, Greece, France and Italy have 30–50% more insolation than Germany making them financially more attractive. The Greek domestic "solar roof" programme (adopted in June 2009 for installations up to 10 kW) has internal rates of return of 10–15% at current commercial installation costs, which, furthermore, is tax free.
There are more specific questions you’ll have to ask yourself about your location and home—e.g., is my next-door neighbor’s oak tree going to block all my sunlight? You’ll also have to take local weather conditions into consideration. Luckily, there are plenty of other resources to help you find your solar potential. See our Tools section for more info.
A subtype of Darrieus turbine with straight, as opposed to curved, blades. The cycloturbine variety has variable pitch to reduce the torque pulsation and is self-starting.[33] The advantages of variable pitch are: high starting torque; a wide, relatively flat torque curve; a higher coefficient of performance; more efficient operation in turbulent winds; and a lower blade speed ratio which lowers blade bending stresses. Straight, V, or curved blades may be used.[34]

Biomass can be converted to other usable forms of energy such as methane gas or transportation fuels such as ethanol and biodiesel. Rotting garbage, and agricultural and human waste, all release methane gas – also called landfill gas or biogas. Crops, such as corn and sugarcane, can be fermented to produce the transportation fuel, ethanol. Biodiesel, another transportation fuel, can be produced from left-over food products such as vegetable oils and animal fats.[69] Also, biomass to liquids (BTLs) and cellulosic ethanol are still under research.[70][71] There is a great deal of research involving algal fuel or algae-derived biomass due to the fact that it's a non-food resource and can be produced at rates 5 to 10 times those of other types of land-based agriculture, such as corn and soy. Once harvested, it can be fermented to produce biofuels such as ethanol, butanol, and methane, as well as biodiesel and hydrogen. The biomass used for electricity generation varies by region. Forest by-products, such as wood residues, are common in the United States. Agricultural waste is common in Mauritius (sugar cane residue) and Southeast Asia (rice husks). Animal husbandry residues, such as poultry litter, are common in the United Kingdom.[72]

Go-anywhere rechargeable battery pack keeps your handheld gear Go-anywhere rechargeable battery pack keeps your handheld gear going strong. Charge AA/AAA batteries from the sun or any USB port then power your phone MP3 GPS or perk up your tablet in a pinch. Kit included Nomad 7m v2 Solar Panel and Guide 10 Plus power pack. This ultra-lightweight kit ...  More + Product Details Close
Flashing 6 Times: High temperature protection; Flashing 7 Times: PWM driving undervoltage/overvoltage; Flashing 8 Times: Internal voltage reference undervoltage/overvoltage; Flashing 9 Times: Sensor bias current error; Flashing 10 Times: Hardware zero passage detection failure. Noted that the above operations can only be performed with the power grid connected.
In 2016, the city bought its way out of a contract providing energy derived from fossil fuels and arranged to get its power from a 97-unit windfarm in Adrian, Texas, about 500 miles away in the Texas Panhandle. Georgetown doesn’t own the farm, but its agreement allowed the owners to get the financing to build it. This spring, Georgetown is adding power from a 154-megawatt solar farm being built by NRG Energy in Fort Stockton, 340 miles to the west of the city.
In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries' energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared".[49] Italy has the largest proportion of solar electricity in the world, in 2015 solar supplied 7.8% of electricity demand in Italy.[54] In 2016, after another year of rapid growth, solar generated 1.3% of global power.[55]
The locations with highest annual solar irradiance lie in the arid tropics and subtropics. Deserts lying in low latitudes usually have few clouds, and can receive sunshine for more than ten hours a day.[86][87] These hot deserts form the Global Sun Belt circling the world. This belt consists of extensive swathes of land in Northern Africa, Southern Africa, Southwest Asia, Middle East, and Australia, as well as the much smaller deserts of North and South America.[88] Africa's eastern Sahara Desert, also known as the Libyan Desert, has been observed to be the sunniest place on Earth according to NASA.[89][90]