In cases of self consumption of the solar energy, the payback time is calculated based on how much electricity is not purchased from the grid. For example, in Germany, with electricity prices of 0.25 €/kWh and insolation of 900 kWh/kW, one kWp will save €225 per year, and with an installation cost of 1700 €/KWp the system cost will be returned in less than seven years.[91] However, in many cases, the patterns of generation and consumption do not coincide, and some or all of the energy is fed back into the grid. The electricity is sold, and at other times when energy is taken from the grid, electricity is bought. The relative costs and prices obtained affect the economics. In many markets, the price paid for sold PV electricity is significantly lower than the price of bought electricity, which incentivizes self consumption.[92] Moreover, separate self consumption incentives have been used in e.g. Germany and Italy.[92] Grid interaction regulation has also included limitations of grid feed-in in some regions in Germany with high amounts of installed PV capacity.[92][93] By increasing self consumption, the grid feed-in can be limited without curtailment, which wastes electricity.[94]
It is hard to beat the advantages of solar: No moving parts. Warranties of 25 years are common for PV modules. No maintenance, other than the occasional hosing-off if you live in a dusty place. The installed price of a 6 kW wind turbine on a good height tower is about $50,000 (and we are not even counting the money you are going to sink into maintenance of that wind turbine). At the time of this writing, half that money will buy you about 7 kW of installed solar panels. In our not-so-sunny Ottawa location those solar modules will produce around 8,000 kWh of electrical energy per average year, and they will do that for 30 years or more.
If you regularly find your lawn furniture blown over, or have to collect it from the neighbour’s yard, your house needs to be repainted every year or two because it constantly gets sand-blasted, and where the trees have funny shapes (and not because your power company has been doing the pruning), that is when you know you live in a windy place where a wind turbine is likely to make economic sense.
Through collaboration, smaller buyers can benefit from economies of scale, while larger buyers can continue to see cost benefits while achieving their renewable energy goals. Aggregation allows companies to procure in a mutually beneficial way with relatively little give and take. For that reason, RMI believes this marks “the beginning of a trend,” Haley said.  
Eight solar panels and one measly little wind generator supplied all the power we used. We bolted the pole that supported the wind generator to a wall of our house, which, sound-wise, turned the roof of the house into one big drumhead.  Oops! Live and learn. And when the wind REALLY blew—which was often—the thing broke. The manufacturer replaced the main unit several times before we gave up on wind power.

There are more specific questions you’ll have to ask yourself about your location and home—e.g., is my next-door neighbor’s oak tree going to block all my sunlight? You’ll also have to take local weather conditions into consideration. Luckily, there are plenty of other resources to help you find your solar potential. See our Tools section for more info.
In 2006 California approved the 'California Solar Initiative', offering a choice of investment subsidies or FIT for small and medium systems and a FIT for large systems. The small-system FIT of $0.39 per kWh (far less than EU countries) expires in just 5 years, and the alternate "EPBB" residential investment incentive is modest, averaging perhaps 20% of cost. All California incentives are scheduled to decrease in the future depending as a function of the amount of PV capacity installed.
Anaerobic digestion, geothermal power, wind power, small-scale hydropower, solar energy, biomass power, tidal power, wave power, and some forms of nuclear power (ones which are able to "burn" nuclear waste through a process known as nuclear transmutation, such as an Integral Fast Reactor, and therefore belong in the "Green Energy" category). Some definitions may also include power derived from the incineration of waste.
Second-generation technologies include solar heating and cooling, wind power, modern forms of bioenergy and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. The initial investment was prompted by energy security concerns linked to the oil crises (1973 and 1979) of the 1970s but the continuing appeal of these renewables is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials.
Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass.[99] As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Wood remains the largest biomass energy source today;[100] examples include forest residues – such as dead trees, branches and tree stumps –, yard clippings, wood chips and even municipal solid waste. In the second sense, biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including biofuels. Industrial biomass can be grown from numerous types of plants, including miscanthus, switchgrass, hemp, corn, poplar, willow, sorghum, sugarcane, bamboo,[101] and a variety of tree species, ranging from eucalyptus to oil palm (palm oil).
There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of sustainable energy. This research spans several areas of focus across the sustainable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[94] Multiple federally supported research organizations have focused on sustainable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners.[95] Sandia has a total budget of $2.4 billion [96] while NREL has a budget of $375 million.[97]
Between maintenance and repairs, it would greatly help and keep your cost down if you can do some of the work yourself: Being able to safely tilt the turbine tower up or down will save you money. Understanding how the turbine works, how to stop it safely, how to trouble-shoot at least the minor issues can keep you in the black. We understand that installing a wind turbine is not for everyone. In fact, towers are dangerous, and for a good installation the devil is in the details. An experienced installer can make a real difference in putting up a turbine that will work better, and be more reliable over time. We really encourage you to have a professional installer to do the initial installation. However, throwing up your hands and calling your installer for routine maintenance, or every time there is a minor issue, will likely make you an unhappy wind turbine owner (even if it is your installer’s dream).

Green energy, however, utilizes energy sources that are readily available all over the world, including in rural and remote areas that don't otherwise have access to electricity. Advances in renewable energy technologies have lowered the cost of solar panels, wind turbines and other sources of green energy, placing the ability to produce electricity in the hands of the people rather than those of oil, gas, coal and utility companies.

It is possible to use any type of solar thermal panel (sheet and tubes, roll-bond, heat pipe, thermal plates) or hybrid (mono/polycrystalline, thin film) in combination with the heat pump. The use of a hybrid panel is preferable because it allows covering a part of the electricity demand of the heat pump and reduce the power consumption and consequently the variable costs of the system.
Hydro-electricity and geothermal electricity produced at favourable sites are now the cheapest way to generate electricity. Renewable energy costs continue to drop, and the levelised cost of electricity (LCOE) is declining for wind power, solar photovoltaic (PV), concentrated solar power (CSP) and some biomass technologies.[100] Renewable energy is also the most economic solution for new grid-connected capacity in areas with good resources. As the cost of renewable power falls, the scope of economically viable applications increases. Renewable technologies are now often the most economic solution for new generating capacity. Where "oil-fired generation is the predominant power generation source (e.g. on islands, off-grid and in some countries) a lower-cost renewable solution almost always exists today".[100] A series of studies by the US National Renewable Energy Laboratory modeled the "grid in the Western US under a number of different scenarios where intermittent renewables accounted for 33 percent of the total power." In the models, inefficiencies in cycling the fossil fuel plants to compensate for the variation in solar and wind energy resulted in an additional cost of "between $0.47 and $1.28 to each MegaWatt hour generated"; however, the savings in the cost of the fuels saved "adds up to $7 billion, meaning the added costs are, at most, two percent of the savings."[101]
Renewable energy resources exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency is resulting in significant energy security, climate change mitigation, and economic benefits.[8] The results of a recent review of the literature[9] concluded that as greenhouse gas (GHG) emitters begin to be held liable for damages resulting from GHG emissions resulting in climate change, a high value for liability mitigation would provide powerful incentives for deployment of renewable energy technologies. In international public opinion surveys there is strong support for promoting renewable sources such as solar power and wind power.[10] At the national level, at least 30 nations around the world already have renewable energy contributing more than 20 percent of energy supply. National renewable energy markets are projected to continue to grow strongly in the coming decade and beyond.[11] Some places and at least two countries, Iceland and Norway generate all their electricity using renewable energy already, and many other countries have the set a goal to reach 100% renewable energy in the future. For example, in Denmark the government decided to switch the total energy supply (electricity, mobility and heating/cooling) to 100% renewable energy by 2050.[12]
Since we mentioned maintenance: Consider that in a reasonably windy place a wind turbine can run 7000 hours or more per year. If it were a car, going at 50 km/h (30 mph), it would travel 350,000 km (or 200,000+ miles). That means you should plan for an annual inspection, and perform the needed maintenance (greasing for example), regardless of the recommendation of the manufacturer. It is just as important to inspect and maintain the tower annually. We know of a tower that collapsed because nuts worked themselves loose from their bolts over 2½ years time, no inspection nor maintenance were done during that time, ultimately leading to its undoing. Wind turbines and towers live in a very harsh environment. It is important to check for issues, such as loose bolts or tower guy wires that need re-tensioning, before they become a problem.
Some people, including Greenpeace founder and first member Patrick Moore,[67][68][69] George Monbiot,[70] Bill Gates[71] and James Lovelock[72] have specifically classified nuclear power as green energy. Others, including Greenpeace's Phil Radford[73][74] disagree, claiming that the problems associated with radioactive waste and the risk of nuclear accidents (such as the Chernobyl disaster) pose an unacceptable risk to the environment and to humanity. However, newer nuclear reactor designs are capable of utilizing what is now deemed "nuclear waste" until it is no longer (or dramatically less) dangerous, and have design features that greatly minimize the possibility of a nuclear accident. These designs have yet to be commercialized. (See: Molten salt reactor)
The typical cost factors for solar power include the costs of the modules, the frame to hold them, wiring, inverters, labour cost, any land that might be required, the grid connection, maintenance and the solar insolation that location will receive. Adjusting for inflation, it cost $96 per watt for a solar module in the mid-1970s. Process improvements and a very large boost in production have brought that figure down to 68 cents per watt in February 2016, according to data from Bloomberg New Energy Finance.[69] Palo Alto California signed a wholesale purchase agreement in 2016 that secured solar power for 3.7 cents per kilowatt-hour. And in sunny Dubai large-scale solar generated electricity sold in 2016 for just 2.99 cents per kilowatt-hour – "competitive with any form of fossil-based electricity — and cheaper than most."[70]
A regular alternator out of a car needs to be modified to produce anything meaningful above a few volts if any at low RPM. If this guy is not totally bullshit lieing, he is using a modified PMA alternator (permanent magnet alternator) and if not the voltage he is so proudly showing is actually a voltage drop caused by the alternator using power to power it's field coil. This is very misleading to newcomers to the field of renewable energy and makes a mockery of it. And if he really wanted to help people build this he would have should people how to wire the alternator up . Including explaining things like the wires on the regulator the ignition switch , the stator and the field wires. This is why rednecks laugh at liberals because they see shit like this. .

The Desert Sunlight Solar Farm is a 550 MW power plant in Riverside County, California, that uses thin-film CdTe-modules made by First Solar.[41] As of November 2014, the 550 megawatt Topaz Solar Farm was the largest photovoltaic power plant in the world. This was surpassed by the 579 MW Solar Star complex. The current largest photovoltaic power station in the world is Longyangxia Dam Solar Park, in Gonghe County, Qinghai, China.