In 2015, Ross wrote an op-ed for Time magazine about his city’s planned transition to renewables. “A town in the middle of a state that recently sported oil derricks on its license plates may not be where you’d expect to see leaders move to clean solar and wind generation,” he wrote. Lest readers get the wrong idea, he felt compelled to explain: “No, environmental zealots have not taken over City Council.”
Japan and China have national programs aimed at commercial scale Space-Based Solar Power (SBSP). The China Academy of Space Technology (CAST) won the 2015 International SunSat Design Competition with this video of their Multi-Rotary Joint design. Proponents of SBSP claim that Space-Based Solar Power would be clean, constant, and global, and could scale to meet all planetary energy demand.[56] A recent multi-agency industry proposal (echoing the 2008 Pentagon recommendation) won the SECDEF/SECSTATE/USAID Director D3 (Diplomacy, Development, Defense) Innovation Challenge.[57]
Kits (3) Wind Turbine Products (91) - Wind Turbines (14) - Primus Wind Turbines (2) - SkyMAX Wind™ Turbines (1) - Wind Turbine Blades (16) - Wind Turbine Hubs & Hub Adapters (7) - Wind Turbine PMAs & PMGs (20) - Wind Turbine Tails (2) - Brake Switches (5) - Diversion Dump Load Resistors (8) - Wind Turbine Hardware (18) Hydro Products (6) - Freedom & Freedom II Hydroelectric PMGs (2) - Hydro Parts & Accessories (4) Solar Products (71) - Solar Panels (9) - Solar Panel Kits (3) - Solar Charge Controllers (35) - Solar Panel Mounting (23) Charge Controllers (79) - Wind Turbine Charge Controllers (1) - MidNite Classic MPPT Charge Controllers (13) - Solar Charge Controllers (35) - Wind & Solar Hybrid Charge Controllers (34) - SkyMAX Wind Hybrid Charge Controllers (1) Power Without Batteries (3) Power Inverters (134) - Micro Inverters (4) - Transfer Switches (1) - UL Certified DC to AC Power Inverters (12) - Grid Tie Feed Inverters (28) - Low Frequency Inverter Chargers (41) - Modified Sine Power Inverters (28) - Pure Sine Wave Inverters (24) - Inverter Cables (16) - 220 Volt 50 Hz Inverters (2) - Power Inverter Remotes (7) Cable & Electrical Components (130) - Disconnect Switches (4) - Steel Enclosures (3) - Cable, Terminals, & Connectors (69) - Fuses & Breakers (23) - Surge Protection (2) - 3 Phase Rectifiers (9) - Blocking Diodes (7) Renewable Energy Appliances (16) - Solar DC Powered Chest Freezers (7) - DC Ceiling Fans (1) - LED Lights (2) - Other (6) DC and AC Meters (23) - Amp Meters (12) - Volt Meters (9) - Watt Meters (2) DC Water Heater Elements (6) Pond Aeration (26) - Aeration Kits (10) - Air Pumps (7) - Hoses & Accessories (10) DC to DC Step Down Converters (7) Batteries (29) - Flooded Lead Acid Batteries (5) - Lithium Ion Batteries (2) - Sealed AGM Batteries (4) - Battery Accessories (11) - Battery Desulfators and Chargers (7)
The typical cost factors for solar power include the costs of the modules, the frame to hold them, wiring, inverters, labour cost, any land that might be required, the grid connection, maintenance and the solar insolation that location will receive. Adjusting for inflation, it cost $96 per watt for a solar module in the mid-1970s. Process improvements and a very large boost in production have brought that figure down to 68 cents per watt in February 2016, according to data from Bloomberg New Energy Finance.[69] Palo Alto California signed a wholesale purchase agreement in 2016 that secured solar power for 3.7 cents per kilowatt-hour. And in sunny Dubai large-scale solar generated electricity sold in 2016 for just 2.99 cents per kilowatt-hour – "competitive with any form of fossil-based electricity — and cheaper than most."[70]
Cleaner air and water: Burning fossil fuels releases greenhouse gases (GHG) into the atmosphere. GHG contribute to global climate change, rising sea levels and unpredictable weather patterns that can be costly in terms of human and economic losses. Burning fossil fuels also releases contaminants in to the air and water near the power generation source. Alternative energy sources can produce the same electricity in a greener way. You can shrink your carbon footprint, help curb climate change and reduce air and water pollution when you choose renewable electricity.
Renewable energy projects in many developing countries have demonstrated that renewable energy can directly contribute to poverty reduction by providing the energy needed for creating businesses and employment. Renewable energy technologies can also make indirect contributions to alleviating poverty by providing energy for cooking, space heating, and lighting. Renewable energy can also contribute to education, by providing electricity to schools.[140]
Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources such as trees and grasses is also being developed as a feedstock for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the USA and in Brazil. Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe.
This sets sustainable energy apart from other renewable energy terminology such as alternative energy by focusing on the ability of an energy source to continue providing energy. Sustainable energy can produce some pollution of the environment, as long as it is not sufficient to prohibit heavy use of the source for an indefinite amount of time. Sustainable energy is also distinct from low-carbon energy, which is sustainable only in the sense that it does not add to the CO2 in the atmosphere.
Kits (3) Wind Turbine Products (91) - Wind Turbines (14) - Primus Wind Turbines (2) - SkyMAX Wind™ Turbines (1) - Wind Turbine Blades (16) - Wind Turbine Hubs & Hub Adapters (7) - Wind Turbine PMAs & PMGs (20) - Wind Turbine Tails (2) - Brake Switches (5) - Diversion Dump Load Resistors (8) - Wind Turbine Hardware (18) Hydro Products (6) - Freedom & Freedom II Hydroelectric PMGs (2) - Hydro Parts & Accessories (4) Solar Products (71) - Solar Panels (9) - Solar Panel Kits (3) - Solar Charge Controllers (35) - Solar Panel Mounting (23) Charge Controllers (79) - Wind Turbine Charge Controllers (1) - MidNite Classic MPPT Charge Controllers (13) - Solar Charge Controllers (35) - Wind & Solar Hybrid Charge Controllers (34) - SkyMAX Wind Hybrid Charge Controllers (1) Power Without Batteries (3) Power Inverters (134) - Micro Inverters (4) - Transfer Switches (1) - UL Certified DC to AC Power Inverters (12) - Grid Tie Feed Inverters (28) - Low Frequency Inverter Chargers (41) - Modified Sine Power Inverters (28) - Pure Sine Wave Inverters (24) - Inverter Cables (16) - 220 Volt 50 Hz Inverters (2) - Power Inverter Remotes (7) Cable & Electrical Components (130) - Disconnect Switches (4) - Steel Enclosures (3) - Cable, Terminals, & Connectors (69) - Fuses & Breakers (23) - Surge Protection (2) - 3 Phase Rectifiers (9) - Blocking Diodes (7) Renewable Energy Appliances (16) - Solar DC Powered Chest Freezers (7) - DC Ceiling Fans (1) - LED Lights (2) - Other (6) DC and AC Meters (23) - Amp Meters (12) - Volt Meters (9) - Watt Meters (2) DC Water Heater Elements (6) Pond Aeration (26) - Aeration Kits (10) - Air Pumps (7) - Hoses & Accessories (10) DC to DC Step Down Converters (7) Batteries (29) - Flooded Lead Acid Batteries (5) - Lithium Ion Batteries (2) - Sealed AGM Batteries (4) - Battery Accessories (11) - Battery Desulfators and Chargers (7)
Wind energy research dates back several decades to the 1970s when NASA developed an analytical model to predict wind turbine power generation during high winds.[136] Today, both Sandia National Laboratories and National Renewable Energy Laboratory have programs dedicated to wind research. Sandia’s laboratory focuses on the advancement of materials, aerodynamics, and sensors.[137] The NREL wind projects are centered on improving wind plant power production, reducing their capital costs, and making wind energy more cost effective overall.[138] The Field Laboratory for Optimized Wind Energy (FLOWE) at Caltech was established to research renewable approaches to wind energy farming technology practices that have the potential to reduce the cost, size, and environmental impact of wind energy production.[139] The president of Sky WindPower Corporation thinks that wind turbines will be able to produce electricity at a cent/kWh at an average which in comparison to coal-generated electricity is a fractional of the cost.[140]
Second-generation technologies include solar heating and cooling, wind power, modern forms of bioenergy and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. The initial investment was prompted by energy security concerns linked to the oil crises (1973 and 1979) of the 1970s but the continuing appeal of these renewables is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials.
Thorium is a fissionable material used in thorium-based nuclear power. The thorium fuel cycle claims several potential advantages over a uranium fuel cycle, including greater abundance, superior physical and nuclear properties, better resistance to nuclear weapons proliferation[121][122][123] and reduced plutonium and actinide production.[123] Therefore, it is sometimes referred as sustainable.[124]
For several years, worldwide growth of solar PV was driven by European deployment, but has since shifted to Asia, especially China and Japan, and to a growing number of countries and regions all over the world, including, but not limited to, Australia, Canada, Chile, India, Israel, Mexico, South Africa, South Korea, Thailand, and the United States.