The early development of solar technologies starting in the 1860s was driven by an expectation that coal would soon become scarce. Charles Fritts installed the world's first rooftop photovoltaic solar array, using 1%-efficient selenium cells, on a New York City roof in 1884.[28] However, development of solar technologies stagnated in the early 20th century in the face of the increasing availability, economy, and utility of coal and petroleum.[29] In 1974 it was estimated that only six private homes in all of North America were entirely heated or cooled by functional solar power systems.[30] The 1973 oil embargo and 1979 energy crisis caused a reorganization of energy policies around the world and brought renewed attention to developing solar technologies.[31][32] Deployment strategies focused on incentive programs such as the Federal Photovoltaic Utilization Program in the US and the Sunshine Program in Japan. Other efforts included the formation of research facilities in the United States (SERI, now NREL), Japan (NEDO), and Germany (Fraunhofer–ISE).[33] Between 1970 and 1983 installations of photovoltaic systems grew rapidly, but falling oil prices in the early 1980s moderated the growth of photovoltaics from 1984 to 1996.
“[The maps] suggest that our 100 percent renewable energy purchasing goal — which relies on buying surplus renewable energy when it’s sunny and windy, to offset the lack of renewable energy supply in other situations — is an important first step toward achieving a fully carbon-free future,” Michael Terrell, Google’s head of energy markets, wrote in a blog post. “Ultimately, we aspire to source carbon-free energy for our operations in all places, at all times.”
This discussion is mainly about factory-made grid-tie wind turbines. The off-grid crowd has an entirely different set of decisions and goals. The main ones are that for off-grid use economic viability in comparison with the electrical grid is not an issue, and a wind turbine can make up for the loss of sunlight (and PV electricity) in the winter months. For the DIY group there are several good turbine designs available; Hugh Piggott and the two Dans have written books that outline this step-by-step. Building your own turbine can be a great hobby, and some of the topics touched below apply (such as proper site selection), but this discussion is not about those. The decisions involved in making your own turbine, and the cost basis, have little overlap with a the process of having an installer put a factory-made turbine in your backyard.

Max daily output is at 1.4KW. It also works when there is only the wind power, getting single power. Closed maintenance-free ball bearings ensure not only lightness, high efficiency and low wear. The series of wind turbine with high-quality aluminum alloy and stainless steel parts, the machine is not only light weight, small size, shape is also better than similar products.


In conclusion, I would say that however great the scientific importance of this discovery may be, its practical value will be no less obvious when we reflect that the supply of solar energy is both without limit and without cost, and that it will continue to pour down upon us for countless ages after all the coal deposits of the earth have been exhausted and forgotten.[36]
Features:Human-friendly design, easy to install and maintain.Patented generator, low torque at start-up, high conversion rate.Low start-up speed, high wind power utilization, low vibration and low noise.Automatically adjust wind direction, high cost-performance. The use of high temperature Teflon wire, die-casting aluminum for the shell material of the generator.Blade built-in copper inserts, bolts will not damage when the nylon fiber damage, it is not e.
Energy storage is a collection of methods used to store electrical energy on an electrical power grid, or off it. Electrical energy is stored during times when production (especially from intermittent power plants such as renewable electricity sources such as wind power, tidal power, solar power) exceeds consumption, and returned to the grid when production falls below consumption. Pumped-storage hydroelectricity is used for more than 90% of all grid power storage. Costs of lithium ion batteries are dropping rapidly, and are increasingly being deployed as fast acting sources of grid power (i.e. operating reserve) and for domestic storage.

Thirty years ago Bergey pioneered the radically-simple “Bergey design” that has proven to provide the best reliability, performance, service life, and value of all of the hundreds of competitive products that have come and gone in that time. With only three moving parts and no scheduled maintenance necessary, the Bergey 10 kW has compiled a service record that no other wind turbine can match. We back it up with the longest warranty in the industry.
As the section above shows, anything under 5 m/s annual average wind speed is not going to be worth-while if you want any economic benefit out of a wind turbine. Even with government incentives, you would be better off with solar for most places. Let us take this a bit further, and assume your backyard is pretty windy, a full 6 m/s (13.4 mph) annual average wind speed at 100′ height. You get a 6 kW wind turbine installed, and shell out $50,000 for that privilege. If the installer did her job properly, the turbine is spinning in nice, clean, laminar air, and it will produce around 13,000 kWh per year. You are the kind of person that wins the lottery on a regular basis, marries a beauty queen (or king), and has kids that all go to ivy-league universities; your wind turbine never breaks and you do not have to shell out a single buck for maintenance over 20 years. Now your turbine has produced around 260,000 kWh of electricity, which works out to 19.2 cents per kWh in cost. Maybe you pay more than for electricity and it is worth it, but your are likely not getting rich, and any repairs and maintenance will drive that price up in a hurry.
Several large-scale energy storage suggestions for the grid have been done. Worldwide there is over 100 GW of Pumped-storage hydroelectricity. This improves efficiency and decreases energy losses but a conversion to an energy storing mains electricity grid is a very costly solution. Some costs could potentially be reduced by making use of energy storage equipment the consumer buys and not the state. An example is batteries in electric cars that would double as an energy buffer for the electricity grid. However besides the cost, setting-up such a system would still be a very complicated and difficult procedure. Also, energy storage apparatus' as car batteries are also built with materials that pose a threat to the environment (e.g. Lithium). The combined production of batteries for such a large part of the population would still have environmental concerns. Besides car batteries however, other Grid energy storage projects make use of less polluting energy carriers (e.g. compressed air tanks and flywheel energy storage).
Wave power, which captures the energy of ocean surface waves, and tidal power, converting the energy of tides, are two forms of hydropower with future potential; however, they are not yet widely employed commercially. A demonstration project operated by the Ocean Renewable Power Company on the coast of Maine, and connected to the grid, harnesses tidal power from the Bay of Fundy, location of world's highest tidal flow. Ocean thermal energy conversion, which uses the temperature difference between cooler deep and warmer surface waters, has currently no economic feasibility.
As the cost of solar electricity has fallen, the number of grid-connected solar PV systems has grown into the millions and utility-scale solar power stations with hundreds of megawatts are being built. Solar PV is rapidly becoming an inexpensive, low-carbon technology to harness renewable energy from the Sun. The current largest photovoltaic power station in the world is the 850 MW Longyangxia Dam Solar Park, in Qinghai, China.
×