The tables above are for HAWTs, the regular horizontal “wind mill” type we are all familiar with. For VAWTs the tables can be used as well, but you have to convert their dimensions. Calculate the frontal area (swept area) of the VAWT by multiplying height and width, or for a curved egg-beater approximate the area. Now convert the surface area to a diameter, as if it were a circle: Diameter = √(4 • Area / Pi). That will give you a diameter for the table. Look up the energy production for that diameter and your average annual wind speed and do the following:
Julia Pyper is a Senior Editor at Greentech Media covering clean energy policy, the solar industry, grid edge technologies and electric mobility. She previously reported for E&E Publishing, and has covered clean energy and climate change issues across the U.S. and abroad, including in Haiti, Israel and the Maldives. Julia holds degrees from McGill and Columbia Universities. Find her on Twitter @JMPyper.
The life-cycle greenhouse-gas emissions of solar power are in the range of 22 to 46 gram (g) per kilowatt-hour (kWh) depending on if solar thermal or solar PV is being analyzed, respectively. With this potentially being decreased to 15 g/kWh in the future.[121] For comparison (of weighted averages), a combined cycle gas-fired power plant emits some 400–599 g/kWh,[122] an oil-fired power plant 893 g/kWh,[122] a coal-fired power plant 915–994 g/kWh[123] or with carbon capture and storage some 200 g/kWh, and a geothermal high-temp. power plant 91–122 g/kWh.[122] The life cycle emission intensity of hydro, wind and nuclear power are lower than solar's as of 2011 as published by the IPCC, and discussed in the article Life-cycle greenhouse-gas emissions of energy sources. Similar to all energy sources were their total life cycle emissions primarily lay in the construction and transportation phase, the switch to low carbon power in the manufacturing and transportation of solar devices would further reduce carbon emissions. BP Solar owns two factories built by Solarex (one in Maryland, the other in Virginia) in which all of the energy used to manufacture solar panels is produced by solar panels. A 1-kilowatt system eliminates the burning of approximately 170 pounds of coal, 300 pounds of carbon dioxide from being released into the atmosphere, and saves up to 105 gallons of water consumption monthly.[124]
These include E-glass/carbon, E-glass/aramid and they present an exciting alternative to pure glass or carbon reinforcements. that the full replacement would lead to 80% weight savings, and cost increase by 150%, while a partial (30%) replacement would lead to only 90% cost increase and 50% weight reduction for 8 m turbine. The world currently longest wind turbine rotor blade, the 88.4 m long blade from LM Wind Power is made of carbon/glass hybrid composites. However, additional investigations are required for the optimal composition of the materials [50]
Currently, flying manned electric aircraft are mostly experimental demonstrators, though many small unmanned aerial vehicles are powered by batteries. Electrically powered model aircraft have been flown since the 1970s, with one report in 1957.[186][187] The first man-carrying electrically powered flights were made in 1973.[188] Between 2015–2016, a manned, solar-powered plane, Solar Impulse 2, completed a circumnavigation of the Earth.[189]
Several refineries that can process biomass and turn it into ethanol are built by companies such as Iogen, POET, and Abengoa, while other companies such as the Verenium Corporation, Novozymes, and Dyadic International[163] are producing enzymes which could enable future commercialization. The shift from food crop feedstocks to waste residues and native grasses offers significant opportunities for a range of players, from farmers to biotechnology firms, and from project developers to investors.[164]
The stiffness of composites is determined by the stiffness of fibers and their volume content. Typically, E-glass fibers are used as main reinforcement in the composites. Typically, the glass/epoxy composites for wind blades contain up to 75 weight % glass. This increases the stiffness, tensile and compression strength. A promising source of the composite materials in the future is glass fibers with modified compositions like S-glass, R-glass etc. Some other special glasses developed by Owens Corning are ECRGLAS, Advantex and most recently WindStrand glass fibers. [49]

The conversion of the rotational mechanical power generated by the rotor blades (known as the prime mover) into useful electrical power for use in domestic power and lighting applications or to charge batteries can be accomplished by any one of the following major types of rotational electrical machines commonly used in a wind power generating systems:
Biomass can be converted to other usable forms of energy such as methane gas or transportation fuels such as ethanol and biodiesel. Rotting garbage, and agricultural and human waste, all release methane gas – also called landfill gas or biogas. Crops, such as corn and sugarcane, can be fermented to produce the transportation fuel, ethanol. Biodiesel, another transportation fuel, can be produced from left-over food products such as vegetable oils and animal fats.[69] Also, biomass to liquids (BTLs) and cellulosic ethanol are still under research.[70][71] There is a great deal of research involving algal fuel or algae-derived biomass due to the fact that it's a non-food resource and can be produced at rates 5 to 10 times those of other types of land-based agriculture, such as corn and soy. Once harvested, it can be fermented to produce biofuels such as ethanol, butanol, and methane, as well as biodiesel and hydrogen. The biomass used for electricity generation varies by region. Forest by-products, such as wood residues, are common in the United States. Agricultural waste is common in Mauritius (sugar cane residue) and Southeast Asia (rice husks). Animal husbandry residues, such as poultry litter, are common in the United Kingdom.[72]

It is possible to use any type of solar thermal panel (sheet and tubes, roll-bond, heat pipe, thermal plates) or hybrid (mono/polycrystalline, thin film) in combination with the heat pump. The use of a hybrid panel is preferable because it allows covering a part of the electricity demand of the heat pump and reduce the power consumption and consequently the variable costs of the system.
Above this rated speed, the wind loads on the rotor blades will be approaching the maximum strength of the electrical machine, and the generator will be producing its maximum or rated power output as the rated wind speed window will have been reached. If the wind speed continues to increase, the wind turbine generator would stop at its cut-out point to prevent mechanical and electrical damage, resulting in zero electrical generation. The application of a brake to stop the generator for damaging itself can be either a mechanical governor or electrical speed sensor.
In 2004, natural gas accounted for about 19 percent of the U.S. electricity mix. Use of natural gas is projected to increase dramatically in the next two decades if we continue on our current path, but supplies are limited and imports are increasing. Our growing reliance on natural gas combined with limited supplies makes this fuel subject to price spikes, which can have a significant impact on consumer energy costs. In addition, though natural gas is much cleaner than coal or oil, it does produce global warming emissions when burned. So, while the use of natural gas serves as a good transition to a cleaner future, it is not the ultimate solution.
Specifications: Colors: Red Rated power: 600W Nominal voltage: 12V Start-up wind speed: 2m/s Rated wind speed: 13m/s Survival wind speed: 45m/s Package weight: 13kg Wind wheel diameter: 0.9M Number of blades: 5 Blades material: Nylon fiber Nylon fiber: Three phase ac permanent magnet generator/Maglev generatorsThree phase ac permanent magnet generator/Maglev generators Controller system: Electromagnetic Speed regulation: The wind Angle automatically Working temperature: -40℃~80℃ Features: 1. Low start-up speed, high wind power utilization, light, cute, low vibration. 2.Simple to install and maintain. 3.For home use, For monitoring use, For boat / marine use, For wind solar hybrid streetlight use. Package: 1 x Wind Turbine Generators(with controller) 1 x Stainless steel.
Among sources of renewable energy, hydroelectric plants have the advantages of being long-lived—many existing plants have operated for more than 100 years. Also, hydroelectric plants are clean and have few emissions. Criticisms directed at large-scale hydroelectric plants include: dislocation of people living where the reservoirs are planned, and release of significant amounts of carbon dioxide during construction and flooding of the reservoir.[16]
†Offer is available to Texas residential customers who enroll using the Promotion Code “NIGHTSFREE”. Plan bills a monthly Base Charge, an Energy Charge, and passes through Utility Transmission and Distribution delivery charges. Energy Charges for usage consumed between 9pm and 7am each day is credited back on your bill. The utility charges, including delivery charges for night time hours, are passed through at cost and aggregated on your bill. See Electricity Facts Label for details.

According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment. Cedric Philibert, senior analyst in the renewable energy division at the IEA said: "Photovoltaic and solar-thermal plants may meet most of the world's demand for electricity by 2060 – and half of all energy needs – with wind, hydropower and biomass plants supplying much of the remaining generation". "Photovoltaic and concentrated solar power together can become the major source of electricity", Philibert said.[25]
Green-e is a voluntary certification program for renewable electricity products. The Green-e program establishes consumer protection and environmental standards for electricity products, and verifies that these products meet the standards. The Green-e logo certifies that at least half the power supplied is from renewable sources. Many products will carry the Green-e logo, and the best way to find the most environmentally sensitive providers is by doing some comparison research. To find out which Green-e certified products are available in your state, visit Green-e's electric choices page. Questions about particular providers can be directed to the Center for Resources Solutions, which administers the Green-e program, at (415) 561-2100.
The Green Power Generator Model GPG10000EW is an The Green Power Generator Model GPG10000EW is an electric start gasoline powered generator that delivers 10000 starting watts and 7500-Watt of continuous power to support home leisure or building needs. The 420cc 15HP LCT (Liquide Combustion Technology) OVH engine and 6.6 Gal. gas tank provides reliable power for 9 hours ...  More + Product Details Close
Those not satisfied with the third-party grid approach to green energy via the power grid can install their own locally based renewable energy system. Renewable energy electrical systems from solar to wind to even local hydro-power in some cases, are some of the many types of renewable energy systems available locally. Additionally, for those interested in heating and cooling their dwelling via renewable energy, geothermal heat pump systems that tap the constant temperature of the earth, which is around 7 to 15 degrees Celsius a few feet underground and increases dramatically at greater depths, are an option over conventional natural gas and petroleum-fueled heat approaches. Also, in geographic locations where the Earth's Crust is especially thin, or near volcanoes (as is the case in Iceland) there exists the potential to generate even more electricity than would be possible at other sites, thanks to a more significant temperature gradient at these locales.
One- to 10-kW turbines can be used in applications such as pumping water. Wind energy has been used for centuries to pump water and grind grain. Although mechanical windmills still provide a sensible, low-cost option for pumping water in low-wind areas, farmers and ranchers are finding that wind-electric pumping is more versatile and they can pump twice the volume for the same initial investment. In addition, mechanical windmills must be placed directly above the well, which may not take advantage of available wind resources. Wind-electric pumping systems can be placed where the wind resource is the best and connected to the pump motor with an electric cable. However, in areas with a low wind resource, mechanical windmills can provide more efficient water pumping.
At Bodine-Scott, our renewable energy options have helped dozens of local homes and businesses reduce their utility bills and any negative environmental impact from the use of traditional energy sources. Our technicians are NABCEP-certified experts, and we keep all of our staff informed and up to date on the latest developments in the solar industries. Our average customer sees a 50 percent reduction in utility costs, to say nothing of the invaluable reduction in environmental impact that comes from using clean energy. If you are serious about making an investment in the future of your home and the Earth, contact us today to speak with one of our renewable energy experts.
The Instapark SP-50W solar panel offers you a The Instapark SP-50W solar panel offers you a quiet clean while carbon-free alternative. Capable of converting virtually unlimited solar energy into clean green most importantly free electricity this solar panel is made of high efficiency mono-crystalline solar cells embedded in transparent vinyl acetate behind tempered glass with heavy back sheet ...  More + Product Details Close
Responsible development of all of America’s rich energy resources -- including solar, wind, water, geothermal, bioenergy & nuclear -- will help ensure America’s continued leadership in clean energy. Moving forward, the Energy Department will continue to drive strategic investments in the transition to a cleaner, domestic and more secure energy future.
We harness the earth’s most abundant resources – the strength of the wind, the heat of the sun and the force of water – to power the world’s biggest economies and the most remote communities. Combining onshore and offshore wind, hydro and innovative technologies, GE Renewable Energy has installed more than 400+ gigawatts capacity globally to make the world work better and cleaner.

Besides the greening of fossil fuel and nuclear power plants, another option is the distribution and immediate use of power from solely renewable sources. In this set-up energy storage is again not necessary. For example, TREC has proposed to distribute solar power from the Sahara to Europe. Europe can distribute wind and ocean power to the Sahara and other countries. In this way, power is produced at any given time as at any point of the planet as the sun or the wind is up or ocean waves and currents are stirring. This option however is probably not possible in the short-term, as fossil fuel and nuclear power are still the main sources of energy on the mains electricity net and replacing them will not be possible overnight.
By now you are probably thinking “why would these guys tell me the truth? They sell small wind turbines!”. Yup, guilty as charged. We also want happy customers, and the two are not reconcilable unless we are upfront with you, our customer. Truth is, wind turbine sales are a tiny part of our revenue, and while we would regret losing you, we will still be able to put food on our kids’ plates.
There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of sustainable energy. This research spans several areas of focus across the sustainable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[94] Multiple federally supported research organizations have focused on sustainable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners.[95] Sandia has a total budget of $2.4 billion [96] while NREL has a budget of $375 million.[97]
Wind turbines are manufactured in a wide range of vertical and horizontal axis. The smallest turbines are used for applications such as battery charging for auxiliary power for boats or caravans or to power traffic warning signs. Slightly larger turbines can be used for making contributions to a domestic power supply while selling unused power back to the utility supplier via the electrical grid. Arrays of large turbines, known as wind farms, are becoming an increasingly important source of intermittent renewable energy and are used by many countries as part of a strategy to reduce their reliance on fossil fuels. One assessment claimed that, as of 2009, wind had the "lowest relative greenhouse gas emissions, the least water consumption demands and... the most favourable social impacts" compared to photovoltaic, hydro, geothermal, coal and gas.[1]

Wind turbines do work; put them in nice, smooth air and their energy production is quite predictable (we will get to predicting it a bit further on in this story). The honest manufacturers do not lie or exaggerate, their turbines really can work as advertised in smooth, laminar airflow. However, put that same turbine on a 40 feet tower and even if the annual average wind speed is still 5 m/s at that height, its energy production will fall far short of what you would predict for that value. How short is anybody’s guess, that is part of the point; it is impossible to predict the effect of turbulence other than that it robs the energy production potential of any wind turbine. Roof tops, or other locations on a house, make for poor turbine sites. They are usually very turbulent and on top of that their average wind speeds are usually very low.
It all started in Vermont in 1997. Our passion for protecting the environment led us to our mission: to use the power of consumer choice to change the way power is made. Today, as the longest-serving renewable energy retailer, we remain committed to sustainability every step of the way. By offering only products with an environmental benefit and operating with a zero-carbon footprint, we’re living our promise to the planet, inside and out.

Technologies promote sustainable energy including renewable energy sources, such as hydroelectricity, solar energy, wind energy, wave power,[citation needed] geothermal energy, bioenergy, tidal power and also technologies designed to improve energy efficiency. Costs have decreased immensely throughout the years, and continue to fall. Increasingly, effective government policies support investor confidence and these markets are expanding. Considerable progress is being made in the energy transition from fossil fuels to ecologically sustainable systems, to the point where many studies support 100% renewable energy.

Vertical-axis wind turbines (or VAWTs) have the main rotor shaft arranged vertically. One advantage of this arrangement is that the turbine does not need to be pointed into the wind to be effective, which is an advantage on a site where the wind direction is highly variable. It is also an advantage when the turbine is integrated into a building because it is inherently less steerable. Also, the generator and gearbox can be placed near the ground, using a direct drive from the rotor assembly to the ground-based gearbox, improving accessibility for maintenance. However, these designs produce much less energy averaged over time, which is a major drawback.[24][27]
Power Scorecard is a web tool that rates the environmental quality of electricity offered to customers in California, New Jersey, New York, Pennsylvania, and Texas. It will help identify products that have the lowest overall environmental impact on our air, land, and water, and those that will lead to the development of the most new renewable energy generation. Power Scorecard will be expanding into other states in the near future.

“University of Texas Study Highlights Wind’s Low Cost” • Wind, solar and natural gas have the lowest levelized cost of electricity in the majority of counties across the United States, according to a new report from The University of Texas at Austin’s Energy Institute, part of a series of white papers on the Full Cost of Electricity. [Into the Wind]


U.S. President Barack Obama's American Recovery and Reinvestment Act of 2009 includes more than $70 billion in direct spending and tax credits for clean energy and associated transportation programs. Leading renewable energy companies include First Solar, Gamesa, GE Energy, Hanwha Q Cells, Sharp Solar, Siemens, SunOpta, Suntech Power, and Vestas.[142]
These high strength magnets are usually made from rare earth materials such as neodymium iron (NdFe), or samarium cobalt (SmCo) eliminating the need for the field windings to provide a constant magnetic field, leading to a simpler, more rugged construction. Wound field windings have the advantage of matching their magnetism (and therefore power) with the varying wind speed but require an external energy source to generate the required magnetic field.

By Ellen Coleman—As an American of non-specific cultural identity, I look with envy at families with strong cultural tradition. I wonder who "my people” are. What family traditions will my children (now grown) want to pass on to their own children?  Their exposure has been such a mixed bag of “ritual”—making tamales for Thanksgiving, potstickers for family reunions, fried eggplant for Fourth of July.  What will be their choice of comfort music?  What kinds of homes will they make, what spiritual paths will they take?
Jump up ^ Schröder, K.-P.; Smith, R.C. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x. See also Palmer, J. (2008). "Hope dims that Earth will survive Sun's death". New Scientist. Retrieved 24 March 2008.
Biomass can be converted to other usable forms of energy such as methane gas or transportation fuels such as ethanol and biodiesel. Rotting garbage, and agricultural and human waste, all release methane gas – also called landfill gas or biogas. Crops, such as corn and sugarcane, can be fermented to produce the transportation fuel, ethanol. Biodiesel, another transportation fuel, can be produced from left-over food products such as vegetable oils and animal fats.[69] Also, biomass to liquids (BTLs) and cellulosic ethanol are still under research.[70][71] There is a great deal of research involving algal fuel or algae-derived biomass due to the fact that it's a non-food resource and can be produced at rates 5 to 10 times those of other types of land-based agriculture, such as corn and soy. Once harvested, it can be fermented to produce biofuels such as ethanol, butanol, and methane, as well as biodiesel and hydrogen. The biomass used for electricity generation varies by region. Forest by-products, such as wood residues, are common in the United States. Agricultural waste is common in Mauritius (sugar cane residue) and Southeast Asia (rice husks). Animal husbandry residues, such as poultry litter, are common in the United Kingdom.[72]

Wind turbines need wind. Not just any wind, but the nicely flowing, smooth, laminar kind. That cannot be found at 30 feet height. It can usually not be found at 60 feet. Sometimes you find it at 80 feet. More often than not it takes 100 feet of tower to get there. Those towers cost as much or more, installed, as the turbine itself. How much tower you need for a wind turbine to live up to its potential depends on your particular site; on the trees and structures around it etc. Close to the ground the wind is turbulent, and makes a poor fuel for a small wind turbine.
In October 2018, the American Council for an Energy-Efficient Economy (ACEEE) released its annual "State Energy Efficiency Scorecard." The scorecard concluded that states and electric utility companies are continuing to expand energy efficiency measures in order to meet clean energy goals. In 2017, the U.S. spent $6.6 billion in electricity efficiency programs. $1.3 billion was spent on natural gas efficiency. These programs resulted in 27.3 million megawatt hours (MWh) of electricity saved.[160]
The majority of green pricing programs charge a higher price per kilowatt-hour to support an increased percentage of renewable sources or to buy discrete kilowatt-hour blocks of renewable energy. Other programs have fixed monthly fees, round up customer bills, charge for units of renewable capacity, or offer renewable energy systems for lease or purchase.
While the material cost is significantly higher for all-glass fiber blades than for hybrid glass/carbon fiber blades, there is a potential for tremendous savings in manufacturing costs when labor price is considered. Utilizing carbon fiber enables for simpler designs that use less raw material. The chief manufacturing process in blade fabrication is the layering of plies. By reducing the number of layers of plies, as is enabled by thinner blade design, the cost of labor may be decreased, and in some cases, equate to the cost of labor for glass fiber blades.[51]

By now you are probably thinking “why would these guys tell me the truth? They sell small wind turbines!”. Yup, guilty as charged. We also want happy customers, and the two are not reconcilable unless we are upfront with you, our customer. Truth is, wind turbine sales are a tiny part of our revenue, and while we would regret losing you, we will still be able to put food on our kids’ plates.

Biomass, biogas and biofuels are burned to produce heat/power and in doing so harm the environment. Pollutants such as sulphurous oxides (SOx), nitrous oxides (NOx), and particulate matter (PM) are produced from the combustion of biomass; the World Health Organisation estimates that 7 million premature deaths are caused each year by air pollution.[77] Biomass combustion is a major contributor.[77][78][79]
Large three-bladed horizontal-axis wind turbines (HAWT), with the blades upwind of the tower produce the overwhelming majority of windpower in the world today. These turbines have the main rotor shaft and electrical generator at the top of a tower, and must be pointed into the wind. Small turbines are pointed by a simple wind vane, while large turbines generally use a wind sensor coupled with a yaw system. Most have a gearbox, which turns the slow rotation of the blades into a quicker rotation that is more suitable to drive an electrical generator.[25] Some turbines use a different type of generator suited to slower rotational speed input. These don't need a gearbox, and are called direct-drive, meaning they couple the rotor directly to the generator with no gearbox in between. While permanent magnet direct-drive generators can be more costly due to the rare earth materials required, these gearless turbines are sometimes preferred over gearbox generators because they "eliminate the gear-speed increaser, which is susceptible to significant accumulated fatigue torque loading, related reliability issues, and maintenance costs."[26]
The tables above are for HAWTs, the regular horizontal “wind mill” type we are all familiar with. For VAWTs the tables can be used as well, but you have to convert their dimensions. Calculate the frontal area (swept area) of the VAWT by multiplying height and width, or for a curved egg-beater approximate the area. Now convert the surface area to a diameter, as if it were a circle: Diameter = √(4 • Area / Pi). That will give you a diameter for the table. Look up the energy production for that diameter and your average annual wind speed and do the following:
Interest in recycling blades varies in different markets and depends on the waste legislation and local economics. A challenge in recycling blades is related to the composite material, which is made of a thermosetting matrix and glass fibers or a combination of glass and carbon fibers. Thermosetting matrix cannot be remolded to form new composites. So the options are either to reuse the blade and the composite material elements as they are found in the blade or to transform the composite material into a new source of material. In Germany, wind turbine blades are commercially recycled as part of an alternative fuel mix for a cement factory.
Many industrialized nations have installed significant solar power capacity into their grids to supplement or provide an alternative to conventional energy sources while an increasing number of less developed nations have turned to solar to reduce dependence on expensive imported fuels (see solar power by country). Long distance transmission allows remote renewable energy resources to displace fossil fuel consumption. Solar power plants use one of two technologies:
×