Shi Zhengrong has said that, as of 2012, unsubsidised solar power is already competitive with fossil fuels in India, Hawaii, Italy and Spain. He said "We are at a tipping point. No longer are renewable power sources like solar and wind a luxury of the rich. They are now starting to compete in the real world without subsidies". "Solar power will be able to compete without subsidies against conventional power sources in half the world by 2015".[75]
Projections vary. The EIA has predicted that almost two thirds of net additions to power capacity will come from renewables by 2020 due to the combined policy benefits of local pollution, decarbonisation and energy diversification. Some studies have set out roadmaps to power 100% of the world’s energy with wind, hydroelectric and solar by the year 2030.
There is one more area where buyers may get a false sense of security: Several states in the US have lists of “approved” wind turbines for their rebate programs. An example of this is the California list. The problem is that approval for this list, and the performance data provided (such as rated power and energy production) are essentially self-certified. The less-scrupulous manufacturers can ‘manufacture’ data and submit it under the pretence that it was measured.  The only value of those lists is in telling you what rebates are available, they do not provide reliable turbine information.

Most small wind turbines do not perform quite as well as their manufacturers want you to believe. That should come as no surprise at this point. What may be surprising is that even the turbines of the more honourable manufacturers that are honest about performance fall short, more often than not. The likely cause is turbulence and improper site selection.
The Sunforce 44444 400 Watt Wind Generator uses wind to generate power and run your appliances and electronics. Constructed from lightweight, weatherproof cast aluminum, this generator is also a great choice for powering pumps or charging batteries for large power demands. With a maximum power up to 400 watts or 27 amps, this device features a fully integrated regulator that automatically shuts down when the batteries are completely charged. The 44444 is virtually maintenance free with only two moving parts, and the carbon fiber composite blades ensure low wind noise while the patented high wind over speed technology guarantees a smooth, clean charge. Assembly is required, but this generator installs easily and mounts to any sturdy pole, building, or the Sunforce 44455 Wind Generator 30-Foot Tower Kit. The 44444 uses a 12-volt battery (not included) and measures 27 x 44 x 44 inches (LxWxH)

Another economic measure, closely related to the energy payback time, is the energy returned on energy invested (EROEI) or energy return on investment (EROI),[131] which is the ratio of electricity generated divided by the energy required to build and maintain the equipment. (This is not the same as the economic return on investment (ROI), which varies according to local energy prices, subsidies available and metering techniques.) With expected lifetimes of 30 years,[132] the EROEI of PV systems are in the range of 10 to 30, thus generating enough energy over their lifetimes to reproduce themselves many times (6–31 reproductions) depending on what type of material, balance of system (BOS), and the geographic location of the system.[133]
Biomass, biogas and biofuels are burned to produce heat/power and in doing so harm the environment. Pollutants such as sulphurous oxides (SOx), nitrous oxides (NOx), and particulate matter (PM) are produced from this combustion; the World Health Organisation estimates that 7 million premature deaths are caused each year by air pollution.[102] Biomass combustion is a major contributor.[102][103][104]
There have been "not in my back yard" (NIMBY) concerns relating to the visual and other impacts of some wind farms, with local residents sometimes fighting or blocking construction.[192] In the United States, the Massachusetts Cape Wind project was delayed for years partly because of aesthetic concerns. However, residents in other areas have been more positive. According to a town councilor, the overwhelming majority of locals believe that the Ardrossan Wind Farm in Scotland has enhanced the area.[193]

Using 100% renewable energy was first suggested in a Science paper published in 1975 by Danish physicist Bent Sørensen.[150] It was followed by several other proposals, until in 1998 the first detailed analysis of scenarios with very high shares of renewables were published. These were followed by the first detailed 100% scenarios. In 2006 a PhD thesis was published by Czisch in which it was shown that in a 100% renewable scenario energy supply could match demand in every hour of the year in Europe and North Africa. In the same year Danish Energy professor Henrik Lund published a first paper[151] in which he addresses the optimal combination of renewables, which was followed by several other papers on the transition to 100% renewable energy in Denmark. Since then Lund has been publishing several papers on 100% renewable energy. After 2009 publications began to rise steeply, covering 100% scenarios for countries in Europe, America, Australia and other parts of the world.[152]
A solar vehicle is an electric vehicle powered completely or significantly by direct solar energy. Usually, photovoltaic (PV) cells contained in solar panels convert the sun's energy directly into electric energy. The term "solar vehicle" usually implies that solar energy is used to power all or part of a vehicle's propulsion. Solar power may be also used to provide power for communications or controls or other auxiliary functions. Solar vehicles are not sold as practical day-to-day transportation devices at present, but are primarily demonstration vehicles and engineering exercises, often sponsored by government agencies. However, indirectly solar-charged vehicles are widespread and solar boats are available commercially.
The Sun is the ‘powerhouse’ of our Earth, producing an impressive 3.8x1026joules (J) of heat energy per second without interruption. The Sun radiates in all directions with approximately 50% of the incoming solar radiation reaching the Earth. This is called the greenhouse effect. Approximately 30% of the incoming solar radiation is reflected back into space by our atmosphere. This is called the albedo effect.
Jump up ^ Artificial photosynthesis as a frontier technology for energy sustainability. Thomas Faunce, Stenbjorn Styring, Michael R. Wasielewski, Gary W. Brudvig, A. William Rutherford, Johannes Messinger, Adam F. Lee, Craig L. Hill, Huub deGroot, Marc Fontecave, Doug R. MacFarlane, Ben Hankamer, Daniel G. Nocera, David M. Tiede, Holger Dau, Warwick Hillier, Lianzhou Wang and Rose Amal. Energy Environ. Sci., 2013, Advance Article doi:10.1039/C3EE40534F
The Vestas V164 has a rated capacity of 8 MW,[79] later upgraded to 9.5 MW.[80][81] The wind turbine has an overall height of 220 m (722 ft), a diameter of 164 m (538 ft), is for offshore use, and is the world's largest-capacity wind turbine since its introduction in 2014. The conventional drive train consist of a main gearbox and a medium speed PM generator. Prototype installed in 2014 at the National Test Center Denmark nearby Østerild. Series production began end of 2015.
Enhanced geothermal systems (EGS) are a new type of geothermal power technologies that do not require natural convective hydrothermal resources. The vast majority of geothermal energy within drilling reach is in dry and non-porous rock.[161] EGS technologies "enhance" and/or create geothermal resources in this "hot dry rock (HDR)" through hydraulic stimulation. EGS and HDR technologies, such as hydrothermal geothermal, are expected to be baseload resources which produce power 24 hours a day like a fossil plant. Distinct from hydrothermal, HDR and EGS may be feasible anywhere in the world, depending on the economic limits of drill depth. Good locations are over deep granite covered by a thick (3–5 km) layer of insulating sediments which slow heat loss.[162] There are HDR and EGS systems currently being developed and tested in France, Australia, Japan, Germany, the U.S. and Switzerland. The largest EGS project in the world is a 25 megawatt demonstration plant currently being developed in the Cooper Basin, Australia. The Cooper Basin has the potential to generate 5,000–10,000 MW.
In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries' energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared".[49] Italy has the largest proportion of solar electricity in the world, in 2015 solar supplied 7.8% of electricity demand in Italy.[54] In 2016, after another year of rapid growth, solar generated 1.3% of global power.[55]
Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass.[65] As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Wood remains the largest biomass energy source today;[66] examples include forest residues – such as dead trees, branches and tree stumps –, yard clippings, wood chips and even municipal solid waste. In the second sense, biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including biofuels. Industrial biomass can be grown from numerous types of plants, including miscanthus, switchgrass, hemp, corn, poplar, willow, sorghum, sugarcane, bamboo,[67] and a variety of tree species, ranging from eucalyptus to oil palm (palm oil).
Several groups in various sectors are conducting research on Jatropha curcas, a poisonous shrub-like tree that produces seeds considered by many to be a viable source of biofuels feedstock oil.[117] Much of this research focuses on improving the overall per acre oil yield of Jatropha through advancements in genetics, soil science, and horticultural practices. SG Biofuels, a San Diego-based Jatropha developer, has used molecular breeding and biotechnology to produce elite hybrid seeds of Jatropha that show significant yield improvements over first generation varieties.[118] The Center for Sustainable Energy Farming (CfSEF) is a Los Angeles-based non-profit research organization dedicated to Jatropha research in the areas of plant science, agronomy, and horticulture. Successful exploration of these disciplines is projected to increase Jatropha farm production yields by 200-300% in the next ten years.[119]
Also, the output voltage and power demand depends entirely upon the appliances you have and how you wish to use them. In addition, the location of the wind turbine generator, would the wind resource keep it constantly rotating for long periods of time or would the generator speed and therefore its output vary up and down with variations in the available wind.

Other renewable energy technologies are still under development, and include cellulosic ethanol, hot-dry-rock geothermal power, and marine energy.[156] These technologies are not yet widely demonstrated or have limited commercialization. Many are on the horizon and may have potential comparable to other renewable energy technologies, but still depend on attracting sufficient attention and research, development and demonstration (RD&D) funding.[156]
The PV industry is beginning to adopt levelized cost of electricity (LCOE) as the unit of cost. The electrical energy generated is sold in units of kilowatt-hours (kWh). As a rule of thumb, and depending on the local insolation, 1 watt-peak of installed solar PV capacity generates about 1 to 2 kWh of electricity per year. This corresponds to a capacity factor of around 10–20%. The product of the local cost of electricity and the insolation determines the break even point for solar power. The International Conference on Solar Photovoltaic Investments, organized by EPIA, has estimated that PV systems will pay back their investors in 8 to 12 years.[73] As a result, since 2006 it has been economical for investors to install photovoltaics for free in return for a long term power purchase agreement. Fifty percent of commercial systems in the United States were installed in this manner in 2007 and over 90% by 2009.[74]
Solar energy, radiant light and heat from the sun, is harnessed using a range of ever-evolving technologies such as solar heating, photovoltaics, concentrated solar power (CSP), concentrator photovoltaics (CPV), solar architecture and artificial photosynthesis.[49][50] Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. Active solar technologies encompass solar thermal energy, using solar collectors for heating, and solar power, converting sunlight into electricity either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP).

There are different types of inverters for solar use (string, central, micro). If you’re hoping to install the solar PV system yourself, selecting the best inverter will require serious research and careful planning. If you work through a professional solar installer, on the other hand, the company should help take care of inverter selection for you.
The ability of biomass and biofuels to contribute to a reduction in CO2 emissions is limited because both biomass and biofuels emit large amounts of air pollution when burned and in some cases compete with food supply. Furthermore, biomass and biofuels consume large amounts of water.[200] Other renewable sources such as wind power, photovoltaics, and hydroelectricity have the advantage of being able to conserve water, lower pollution and reduce CO2 emissions.
Green power is a subset of renewable energy and represents those renewable energy resources and technologies that provide the highest environmental benefit. The U.S. Environmental Protection Agency defines green power as electricity produced from solar, wind, geothermal, biogas, biomass and low-impact small hydroelectric sources. Customers often buy green power for avoided environmental impacts and its greenhouse gas reduction benefits.[9]
Prior to the development of coal in the mid 19th century, nearly all energy used was renewable. Almost without a doubt the oldest known use of renewable energy, in the form of traditional biomass to fuel fires, dates from 790,000 years ago. Use of biomass for fire did not become commonplace until many hundreds of thousands of years later, sometime between 200,000 and 400,000 years ago.[31] Probably the second oldest usage of renewable energy is harnessing the wind in order to drive ships over water. This practice can be traced back some 7000 years, to ships in the Persian Gulf[32] and on the Nile.[33] Moving into the time of recorded history, the primary sources of traditional renewable energy were human labor, animal power, water power, wind, in grain crushing windmills,[32] and firewood, a traditional biomass. A graph of energy use in the United States up until 1900 shows oil and natural gas with about the same importance in 1900 as wind and solar played in 2010.
Technologies promote sustainable energy including renewable energy sources, such as hydroelectricity, solar energy, wind energy, wave power,[citation needed] geothermal energy, bioenergy, tidal power and also technologies designed to improve energy efficiency. Costs have decreased immensely throughout the years, and continue to fall. Increasingly, effective government policies support investor confidence and these markets are expanding. Considerable progress is being made in the energy transition from fossil fuels to ecologically sustainable systems, to the point where many studies support 100% renewable energy.
In the next tutorial about Wind Turbine Generators we will look at DC machines and how we can use a DC Generator to produce electricity from the power of the wind. To learn more about “Wind Turbine Generators”, or obtain more wind energy information about the various wind turbine generating systems available, or to explore the advantages and disadvantages of wind energy, Click Here to get your copy of one of the top “Wind Turbine Guides” today direct from Amazon.

The stiffness of composites is determined by the stiffness of fibers and their volume content. Typically, E-glass fibers are used as main reinforcement in the composites. Typically, the glass/epoxy composites for wind blades contain up to 75 weight % glass. This increases the stiffness, tensile and compression strength. A promising source of the composite materials in the future is glass fibers with modified compositions like S-glass, R-glass etc. Some other special glasses developed by Owens Corning are ECRGLAS, Advantex and most recently WindStrand glass fibers. [49]
Low Temperature Geothermal[29] refers to the use of the outer crust of the earth as a Thermal Battery to facilitate Renewable thermal energy for heating and cooling buildings, and other refrigeration and industrial uses. In this form of Geothermal, a Geothermal Heat Pump and Ground-coupled heat exchanger are used together to move heat energy into the earth (for cooling) and out of the earth (for heating) on a varying seasonal basis. Low temperature Geothermal (generally referred to as "GHP") is an increasingly important renewable technology because it both reduces total annual energy loads associated with heating and cooling, and it also flattens the electric demand curve eliminating the extreme summer and winter peak electric supply requirements. Thus Low Temperature Geothermal/GHP is becoming an increasing national priority with multiple tax credit support[60] and focus as part of the ongoing movement toward Net Zero Energy.[61][30] New York City has even just passed a law[62] to require GHP anytime is shown to be economical with 20 year financing including the Socialized Cost of Carbon.[63][64]
The trouble with rated power is that it does not tell you anything about energy production. Your utility company charges you for the energy you consume, not power. Likewise, for a small wind  turbine you should be interested in the energy it will produce, for your particular site, with your particular annual average wind speed. Rated power of the turbine does not do that. To find out about energy production take a look at the tables presented earlier.
Because one obstacle to adopting wind and solar power is reliability—what happens on calm, cloudy days?—recent improvements in energy-storage technology, a.k.a. batteries, are helping accelerate adoption of renewables. Last May, for example, Tucson Electric Power signed a deal for solar energy with storage, which can mitigate (if not entirely resolve) concerns about how to provide power on gray days. The storage upped the energy cost by $15 per megawatt hour. By the end of the year, the Public Service Company of Colorado had been quoted a storage fee that increased the cost of a megawatt hour by only $3 to $7, a drop of more than 50 percent. In a landmark achievement, Tesla installed the world’s largest lithium-ion battery in South Australia last December, to store wind-generated power. But by then Hyundai Electric was at work in the South Korean metropolis of Ulsan on a battery that was 50 percent bigger.
The energy it calculates is in kWh per year, the diameter of the wind turbine rotor is in meters, the wind speed is annual average for the turbine hub height in m/s. The equation uses a Weibull wind distribution with a factor of K=2, which is about right for inland sites. An overall efficiency of the turbine, from wind to electrical grid, of 30% is used. That is a reasonable, real-world efficiency number. Here is a table that shows how average annual wind speed, turbine size, and annual energy production relate:
Wind turbines are manufactured in a wide range of vertical and horizontal axis. The smallest turbines are used for applications such as battery charging for auxiliary power for boats or caravans or to power traffic warning signs. Slightly larger turbines can be used for making contributions to a domestic power supply while selling unused power back to the utility supplier via the electrical grid. Arrays of large turbines, known as wind farms, are becoming an increasingly important source of intermittent renewable energy and are used by many countries as part of a strategy to reduce their reliance on fossil fuels. One assessment claimed that, as of 2009, wind had the "lowest relative greenhouse gas emissions, the least water consumption demands and... the most favourable social impacts" compared to photovoltaic, hydro, geothermal, coal and gas.[1]

The U.S. Environmental Protection Agency (USEPA) Green Power Partnership is a voluntary program that supports the organizational procurement of renewable electricity by offering expert advice, technical support, tools and resources. This can help organizations lower the transaction costs of buying renewable power, reduce carbon footprint, and communicate its leadership to key stakeholders.[88]

Sustainable energy is energy that is consumed at insignificant rates compared to its supply and with manageable collateral effects, especially environmental effects. Another common definition of sustainable energy is an energy system that serves the needs of the present without compromising the ability of future generations to meet their energy needs.[1] Not all renewable energy is sustainable. While renewable energy is defined as energy sources that are naturally replenished on a human timescale, sustainable (often referred to as 'clean') energy must not compromise the system in which it is adopted to the point of being unable to provide for future need. The organizing principle for sustainability is sustainable development, which includes the four interconnected domains: ecology, economics, politics and culture.[2] Sustainability science is the study of sustainable development and environmental science.[3]
A photovoltaic system converts light into electrical direct current (DC) by taking advantage of the photoelectric effect.[51] Solar PV has turned into a multi-billion, fast-growing industry, continues to improve its cost-effectiveness, and has the most potential of any renewable technologies together with CSP.[52][53] Concentrated solar power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Commercial concentrated solar power plants were first developed in the 1980s. CSP-Stirling has by far the highest efficiency among all solar energy technologies.
Most installers overrate the available wind resource. The majority of small wind turbine installations underperforms their predictions, often by a wide margin. Since wind speed is the most important parameter for turbine energy production, getting that wrong has large consequences (the power in the wind goes with the cube of the wind speed, so double the wind speed and the power in it is 2 * 2 * 2 = 8x as much). You have to be realistic about your annual average wind speed.
Green energy, however, utilizes energy sources that are readily available all over the world, including in rural and remote areas that don't otherwise have access to electricity. Advances in renewable energy technologies have lowered the cost of solar panels, wind turbines and other sources of green energy, placing the ability to produce electricity in the hands of the people rather than those of oil, gas, coal and utility companies.
In the next tutorial about Wind Turbine Generators we will look at DC machines and how we can use a DC Generator to produce electricity from the power of the wind. To learn more about “Wind Turbine Generators”, or obtain more wind energy information about the various wind turbine generating systems available, or to explore the advantages and disadvantages of wind energy, Click Here to get your copy of one of the top “Wind Turbine Guides” today direct from Amazon.

Electricity produced by wind generators can be used directly, as in water pumping applications, or it can be stored in batteries for later use. Wind generators can be used alone, or they may be used as part of a hybrid system, in which their output is combined with that of solar panels, and /or a fossil fuel generator. Hybrid systems are especially useful for winter backup of home systems where cloudy weather and windy conditions occur simultaneously.
Then the faster the coil of wire rotates, the greater the rate of change by which the magnetic flux is cut by the coil and the greater is the induced emf within the coil. Similarly, if the magnetic field is made stronger, the induced emf will increase for the same rotational speed. Thus: emf ∝ Φn. Where: “Φ” is the magnetic-field flux and “n” is the speed of rotation. Also, the polarity of the generated voltage depends on the direction of the magnetic lines of flux and the direction of movement of the conductor.

Biomass, biogas and biofuels are burned to produce heat/power and in doing so harm the environment. Pollutants such as sulphurous oxides (SOx), nitrous oxides (NOx), and particulate matter (PM) are produced from this combustion; the World Health Organisation estimates that 7 million premature deaths are caused each year by air pollution.[102] Biomass combustion is a major contributor.[102][103][104]
In October 2018, the American Council for an Energy-Efficient Economy (ACEEE) released its annual "State Energy Efficiency Scorecard." The scorecard concluded that states and electric utility companies are continuing to expand energy efficiency measures in order to meet clean energy goals. In 2017, the U.S. spent $6.6 billion in electricity efficiency programs. $1.3 billion was spent on natural gas efficiency. These programs resulted in 27.3 million megawatt hours (MWh) of electricity saved.[160]

Throughout the country, more than half of all U.S. electricity customers now have an option to purchase some type of green power product from a retail electricity provider. Roughly one-quarter of the nation's utilities offer green power programs to customers, and voluntary retail sales of renewable energy in the United States totaled more than 12 billion kilowatt-hours in 2006, a 40% increase over the previous year.
Responsible development of all of America’s rich energy resources -- including solar, wind, water, geothermal, bioenergy & nuclear -- will help ensure America’s continued leadership in clean energy. Moving forward, the Energy Department will continue to drive strategic investments in the transition to a cleaner, domestic and more secure energy future.
A more reliable grid: Even if we're not ready to completely transition to renewable energy sources of power, supplementing the grid with green electricity helps increase grid reliability. You can also produce your own green electricity by installing solar panels or wind turbines at home. If the grid goes down for some reason, you may be able to keep your power on using your on-site renewable power generation system.
Large national and regional research projects on artificial photosynthesis are designing nanotechnology-based systems that use solar energy to split water into hydrogen fuel.[52] and a proposal has been made for a Global Artificial Photosynthesis project[53] In 2011, researchers at the Massachusetts Institute of Technology (MIT) developed what they are calling an "Artificial Leaf", which is capable of splitting water into hydrogen and oxygen directly from solar power when dropped into a glass of water. One side of the "Artificial Leaf" produces bubbles of hydrogen, while the other side produces bubbles of oxygen.[54]
In 2010, the International Energy Agency predicted that global solar PV capacity could reach 3,000 GW or 11% of projected global electricity generation by 2050—enough to generate 4,500 TWh of electricity.[40] Four years later, in 2014, the agency projected that, under its "high renewables" scenario, solar power could supply 27% of global electricity generation by 2050 (16% from PV and 11% from CSP).[2]