The most common type of residential solar is called solar PV. The PV stands for “photovoltaic,” and a solar PV system is a electrical system that consists of solar panels, an inverter, a meter, and a few other components (mounting, cabling, etc.). A solar PV system requires little to no maintenance for years, and if you’re in a place with the right amount of sunlight, you can end up saving money, while also going green.

A heat pump is a device that provides heat energy from a source of heat to a destination called a "heat sink". Heat pumps are designed to move thermal energy opposite to the direction of spontaneous heat flow by absorbing heat from a cold space and releasing it to a warmer one. A solar-assisted heat pump represents the integration of a heat pump and thermal solar panels in a single integrated system. Typically these two technologies are used separately (or only placing them in parallel) to produce hot water.[180] In this system the solar thermal panel performs the function of the low temperature heat source and the heat produced is used to feed the heat pump's evaporator.[181] The goal of this system is to get high COP and then produce energy in a more efficient and less expensive way.
Responsible development of all of America’s rich energy resources -- including solar, wind, water, geothermal, bioenergy & nuclear -- will help ensure America’s continued leadership in clean energy. Moving forward, the Energy Department will continue to drive strategic investments in the transition to a cleaner, domestic and more secure energy future.
Energy harnessed by wind turbines is intermittent, and is not a "dispatchable" source of power; its availability is based on whether the wind is blowing, not whether electricity is needed. Turbines can be placed on ridges or bluffs to maximize the access of wind they have, but this also limits the locations where they can be placed.[72] In this way, wind energy is not a particularly reliable source of energy. However, it can form part of the energy mix, which also includes power from other sources. Notably, the relative available output from wind and solar sources is often inversely proportional (balancing)[citation needed]. Technology is also being developed to store excess energy, which can then make up for any deficits in supplies.
A solar cell, or photovoltaic cell (PV), is a device that converts light into electric current using the photovoltaic effect. The first solar cell was constructed by Charles Fritts in the 1880s.[5] The German industrialist Ernst Werner von Siemens was among those who recognized the importance of this discovery.[6] In 1931, the German engineer Bruno Lange developed a photo cell using silver selenide in place of copper oxide,[7] although the prototype selenium cells converted less than 1% of incident light into electricity. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the silicon solar cell in 1954.[8] These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%.[9]
Wind turbines do work; put them in nice, smooth air and their energy production is quite predictable (we will get to predicting it a bit further on in this story). The honest manufacturers do not lie or exaggerate, their turbines really can work as advertised in smooth, laminar airflow. However, put that same turbine on a 40 feet tower and even if the annual average wind speed is still 5 m/s at that height, its energy production will fall far short of what you would predict for that value. How short is anybody’s guess, that is part of the point; it is impossible to predict the effect of turbulence other than that it robs the energy production potential of any wind turbine. Roof tops, or other locations on a house, make for poor turbine sites. They are usually very turbulent and on top of that their average wind speeds are usually very low.

I ask Gore about the lessons he takes from Georgetown. “I think it’s important to pay attention to a CPA who becomes a mayor and takes an objective look at how he can save money for the citizens of his community, even if it means ignoring ideological presuppositions about fossil energy. Especially when the mayor in question is in the heart of oil and gas country.”


Solar power is produced by collecting sunlight and converting it into electricity. This is done by using solar panels, which are large flat panels made up of many individual solar cells. It is most often used in remote locations, although it is becoming more popular in urban areas as well. This page contains articles that explore advances in solar energy technology.
Kits (3) Wind Turbine Products (91)    - Wind Turbines (14)    - Primus Wind Turbines (2)    - SkyMAX Wind™ Turbines (1)    - Wind Turbine Blades (16)    - Wind Turbine Hubs & Hub Adapters (7)    - Wind Turbine PMAs & PMGs (20)    - Wind Turbine Tails (2)    - Brake Switches (5)    - Diversion Dump Load Resistors (8)    - Wind Turbine Hardware (18) Hydro Products (6)    - Freedom & Freedom II Hydroelectric PMGs (2)    - Hydro Parts & Accessories (4) Solar Products (71)    - Solar Panels (9)    - Solar Panel Kits (3)    - Solar Charge Controllers (35)    - Solar Panel Mounting (23) Charge Controllers (79)    - Wind Turbine Charge Controllers (1)    - MidNite Classic MPPT Charge Controllers (13)    - Solar Charge Controllers (35)    - Wind & Solar Hybrid Charge Controllers (34)    - SkyMAX Wind Hybrid Charge Controllers (1) Power Without Batteries (3) Power Inverters (134)    - Micro Inverters (4)    - Transfer Switches (1)    - UL Certified DC to AC Power Inverters (12)    - Grid Tie Feed Inverters (28)    - Low Frequency Inverter Chargers (41)    - Modified Sine Power Inverters (28)    - Pure Sine Wave Inverters (24)    - Inverter Cables (16)    - 220 Volt 50 Hz Inverters (2)    - Power Inverter Remotes (7) Cable & Electrical Components (130)    - Disconnect Switches (4)    - Steel Enclosures (3)    - Cable, Terminals, & Connectors (69)    - Fuses & Breakers (23)    - Surge Protection (2)    - 3 Phase Rectifiers (9)    - Blocking Diodes (7) Renewable Energy Appliances (16)    - Solar DC Powered Chest Freezers (7)    - DC Ceiling Fans (1)    - LED Lights (2)    - Other (6) DC and AC Meters (23)    - Amp Meters (12)    - Volt Meters (9)    - Watt Meters (2) DC Water Heater Elements (6) Pond Aeration (26)    - Aeration Kits (10)    - Air Pumps (7)    - Hoses & Accessories (10) DC to DC Step Down Converters (7) Batteries (29)    - Flooded Lead Acid Batteries (5)    - Lithium Ion Batteries (2)    - Sealed AGM Batteries (4)    - Battery Accessories (11)    - Battery Desulfators and Chargers (7)
Jump up ^ Artificial photosynthesis as a frontier technology for energy sustainability. Thomas Faunce, Stenbjorn Styring, Michael R. Wasielewski, Gary W. Brudvig, A. William Rutherford, Johannes Messinger, Adam F. Lee, Craig L. Hill, Huub deGroot, Marc Fontecave, Doug R. MacFarlane, Ben Hankamer, Daniel G. Nocera, David M. Tiede, Holger Dau, Warwick Hillier, Lianzhou Wang and Rose Amal. Energy Environ. Sci., 2013, Advance Article doi:10.1039/C3EE40534F

In the mid-1990s, development of both, residential and commercial rooftop solar as well as utility-scale photovoltaic power stations, began to accelerate again due to supply issues with oil and natural gas, global warming concerns, and the improving economic position of PV relative to other energy technologies.[34] In the early 2000s, the adoption of feed-in tariffs—a policy mechanism, that gives renewables priority on the grid and defines a fixed price for the generated electricity—led to a high level of investment security and to a soaring number of PV deployments in Europe.

The first words of everyone calling us are “the wind is blowing here all the time”. People consistently overestimate how windy their place actually is. They forget about all the times the wind does not blow, and only remember the windy days. Such is human nature. Before even considering a small wind turbine you need to have a good idea of the annual average wind speed for your site. The gold standard is to install a data-logging anemometer (wind meter) at the same height and location as the proposed wind turbine, and let it run for 3 to 5 years. Truth is that it is usually much too expensive to do for small wind turbines, and while logging for 1 year could give you some idea and is the absolute minimum for worthwhile wind information, it is too short to be very reliable. For most of us, the more economical way to find out about the local average wind speed is by looking at a wind atlas, meteorological data, airport information and possibly the local vegetation (for windy spots the trees take on interesting shapes).

The reliability of small wind turbines is (still) problematic. Even the good ones break much more frequently than we would like, and none will run for 20 years without the need to replace at least some part(s). Despite their apparent simplicity, a small wind turbine is nowhere near as reliable as the average car (and even cars will not run for 20 years without stuff breaking). If you are going to install a small wind turbine you should expect that it will break. The only questions are when and how often.
Because one obstacle to adopting wind and solar power is reliability—what happens on calm, cloudy days?—recent improvements in energy-storage technology, a.k.a. batteries, are helping accelerate adoption of renewables. Last May, for example, Tucson Electric Power signed a deal for solar energy with storage, which can mitigate (if not entirely resolve) concerns about how to provide power on gray days. The storage upped the energy cost by $15 per megawatt hour. By the end of the year, the Public Service Company of Colorado had been quoted a storage fee that increased the cost of a megawatt hour by only $3 to $7, a drop of more than 50 percent. In a landmark achievement, Tesla installed the world’s largest lithium-ion battery in South Australia last December, to store wind-generated power. But by then Hyundai Electric was at work in the South Korean metropolis of Ulsan on a battery that was 50 percent bigger.
The International Renewable Energy Agency (IRENA) is an intergovernmental organization for promoting the adoption of renewable energy worldwide. It aims to provide concrete policy advice and facilitate capacity building and technology transfer. IRENA was formed on 26 January 2009, by 75 countries signing the charter of IRENA.[145] As of March 2010, IRENA has 143 member states who all are considered as founding members, of which 14 have also ratified the statute.[146]

When a turbine is mounted on a rooftop the building generally redirects wind over the roof and this can double the wind speed at the turbine. If the height of a rooftop mounted turbine tower is approximately 50% of the building height it is near the optimum for maximum wind energy and minimum wind turbulence. While wind speeds within the built environment are generally much lower than at exposed rural sites,[29][30] noise may be a concern and an existing structure may not adequately resist the additional stress.
Plant energy is produced by crops specifically grown for use as fuel that offer high biomass output per hectare with low input energy. Some examples of these plants are wheat, which typically yield 7.5–8 tonnes of grain per hectare, and straw, which typically yield 3.5–5 tonnes per hectare in the UK.[68] The grain can be used for liquid transportation fuels while the straw can be burned to produce heat or electricity. Plant biomass can also be degraded from cellulose to glucose through a series of chemical treatments, and the resulting sugar can then be used as a first generation biofuel.

Green energy is commonly thought of in the context of electricity, mechanical power, heating and cogeneration. Consumers, businesses, and organizations may purchase green energy in order to support further development, help reduce the environmental impacts of conventional electricity generation, and increase their nation’s energy independence. Renewable energy certificates (green certificates or green tags) have been one way for consumers and businesses to support green energy.
Within emerging economies, Brazil comes second to China in terms of clean energy investments. Supported by strong energy policies, Brazil has one of the world’s highest biomass and small-hydro power capacities and is poised for significant growth in wind energy investment. The cumulative investment potential in Brazil from 2010 to 2020 is projected as $67 billion.[155]
This solar resource map provides a summary of the estimated solar energy available for power generation and other energy applications. It represents the average daily/yearly sum of electricity production from a 1 kW-peak grid-connected solar PV power plant covering the period from 1994/1999/2007 (depending on the geographical region) to 2015. Source: Global Solar Atlas]
×