flywheel energy storage, pumped-storage hydroelectricity is more usable in stationary applications (e.g. to power homes and offices). In household power systems, conversion of energy can also be done to reduce smell. For example, organic matter such as cow dung and spoilable organic matter can be converted to biochar. To eliminate emissions, carbon capture and storage is then used.

This discussion is mainly about factory-made grid-tie wind turbines. The off-grid crowd has an entirely different set of decisions and goals. The main ones are that for off-grid use economic viability in comparison with the electrical grid is not an issue, and a wind turbine can make up for the loss of sunlight (and PV electricity) in the winter months. For the DIY group there are several good turbine designs available; Hugh Piggott and the two Dans have written books that outline this step-by-step. Building your own turbine can be a great hobby, and some of the topics touched below apply (such as proper site selection), but this discussion is not about those. The decisions involved in making your own turbine, and the cost basis, have little overlap with a the process of having an installer put a factory-made turbine in your backyard.
Photovoltaic systems use no fuel, and modules typically last 25 to 40 years. Thus, capital costs make up most of the cost of solar power. Operations and maintenance costs for new utility-scale solar plants in the US are estimated to be 9 percent of the cost of photovoltaic electricity, and 17 percent of the cost of solar thermal electricity.[71] Governments have created various financial incentives to encourage the use of solar power, such as feed-in tariff programs. Also, Renewable portfolio standards impose a government mandate that utilities generate or acquire a certain percentage of renewable power regardless of increased energy procurement costs. In most states, RPS goals can be achieved by any combination of solar, wind, biomass, landfill gas, ocean, geothermal, municipal solid waste, hydroelectric, hydrogen, or fuel cell technologies.[72]
Cyril Richardson and his family witnessed two Category 5 hurricanes in the course of two weeks. They weathered it safely, but like thousands of other Virgin Island residents, they found themselves without power and with no real hope of having it restored for months. With the help of our solar experts, Cyril settled on our popular off-grid system, The Ranch.
The life-cycle greenhouse-gas emissions of solar power are in the range of 22 to 46 gram (g) per kilowatt-hour (kWh) depending on if solar thermal or solar PV is being analyzed, respectively. With this potentially being decreased to 15 g/kWh in the future.[121] For comparison (of weighted averages), a combined cycle gas-fired power plant emits some 400–599 g/kWh,[122] an oil-fired power plant 893 g/kWh,[122] a coal-fired power plant 915–994 g/kWh[123] or with carbon capture and storage some 200 g/kWh, and a geothermal high-temp. power plant 91–122 g/kWh.[122] The life cycle emission intensity of hydro, wind and nuclear power are lower than solar's as of 2011 as published by the IPCC, and discussed in the article Life-cycle greenhouse-gas emissions of energy sources. Similar to all energy sources were their total life cycle emissions primarily lay in the construction and transportation phase, the switch to low carbon power in the manufacturing and transportation of solar devices would further reduce carbon emissions. BP Solar owns two factories built by Solarex (one in Maryland, the other in Virginia) in which all of the energy used to manufacture solar panels is produced by solar panels. A 1-kilowatt system eliminates the burning of approximately 170 pounds of coal, 300 pounds of carbon dioxide from being released into the atmosphere, and saves up to 105 gallons of water consumption monthly.[124]
The array of a photovoltaic power system, or PV system, produces direct current (DC) power which fluctuates with the sunlight's intensity. For practical use this usually requires conversion to certain desired voltages or alternating current (AC), through the use of inverters.[4] Multiple solar cells are connected inside modules. Modules are wired together to form arrays, then tied to an inverter, which produces power at the desired voltage, and for AC, the desired frequency/phase.[4]
Kinetic Internal Thermal Potential Gravitational Elastic Electrical potential energy Mechanical Interatomic potential Electrical Magnetic Ionization Radiant Binding Nuclear binding energy Gravitational binding energy Chromodynamic Dark Quintessence Phantom Negative Chemical Rest Sound energy Surface energy Mechanical wave Sound wave Vacuum energy Zero-point energy
“Climate Change Helped Make California a Tinder Box for its Record-Setting Wildfires” • Camp Fire, which is devastating Sierra Nevada foothills, has become the most destructive wildfire in California’s history. By the evening of November 10, it had scorched 105,000 acres of land and killed 23 people, with more than 100 people still unaccounted for. [Quartz]
Biofuels include a wide range of fuels which are derived from biomass. The term covers solid, liquid, and gaseous fuels.[73] Liquid biofuels include bioalcohols, such as bioethanol, and oils, such as biodiesel. Gaseous biofuels include biogas, landfill gas and synthetic gas. Bioethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. These include maize, sugarcane and, more recently, sweet sorghum. The latter crop is particularly suitable for growing in dryland conditions, and is being investigated by International Crops Research Institute for the Semi-Arid Tropics for its potential to provide fuel, along with food and animal feed, in arid parts of Asia and Africa.[74]
By participating in a green energy program a consumer may be having an effect on the energy sources used and ultimately might be helping to promote and expand the use of green energy. They are also making a statement to policy makers that they are willing to pay a price premium to support renewable energy. Green energy consumers either obligate the utility companies to increase the amount of green energy that they purchase from the pool (so decreasing the amount of non-green energy they purchase), or directly fund the green energy through a green power provider. If insufficient green energy sources are available, the utility must develop new ones or contract with a third party energy supplier to provide green energy, causing more to be built. However, there is no way the consumer can check whether or not the electricity bought is "green" or otherwise.
You have read this far, and still want to install a wind turbine? Then it is time for a reality check: Most (some would say all) installed small wind turbines do abysmally poor in comparison with their energy production numbers as calculated above. That is the message from a number of studies, usually on behalf of governments that subsidize wind turbines. Do not just take our word for this, read it for yourself:
It all started in Vermont in 1997. Our passion for protecting the environment led us to our mission: to use the power of consumer choice to change the way power is made. Today, as the longest-serving renewable energy retailer, we remain committed to sustainability every step of the way. By offering only products with an environmental benefit and operating with a zero-carbon footprint, we’re living our promise to the planet, inside and out.

According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment. Cedric Philibert, senior analyst in the renewable energy division at the IEA said: "Photovoltaic and solar-thermal plants may meet most of the world's demand for electricity by 2060 – and half of all energy needs – with wind, hydropower and biomass plants supplying much of the remaining generation". "Photovoltaic and concentrated solar power together can become the major source of electricity", Philibert said.[25]
Jump up ^ Artificial photosynthesis as a frontier technology for energy sustainability. Thomas Faunce, Stenbjorn Styring, Michael R. Wasielewski, Gary W. Brudvig, A. William Rutherford, Johannes Messinger, Adam F. Lee, Craig L. Hill, Huub deGroot, Marc Fontecave, Doug R. MacFarlane, Ben Hankamer, Daniel G. Nocera, David M. Tiede, Holger Dau, Warwick Hillier, Lianzhou Wang and Rose Amal. Energy Environ. Sci., 2013, Advance Article doi:10.1039/C3EE40534F

Then I pick up a Home Power Magazine, or a Backwoods Home, or a Mother Earth News.  I read the letters to the editor and I think, These are my people!  This is my tribe—the tribe of folks striving for independence of thought and lifestyle, who are creative in their choice of building materials, who try to make responsible choices about how their choices affect the environment they live in.
Airflows can be used to run wind turbines. Modern utility-scale wind turbines range from around 600 kW to 5 MW of rated power, although turbines with rated output of 1.5–3 MW have become the most common for commercial use. The largest generator capacity of a single installed onshore wind turbine reached 7.5 MW in 2015. The power available from the wind is a function of the cube of the wind speed, so as wind speed increases, power output increases up to the maximum output for the particular turbine.[42] Areas where winds are stronger and more constant, such as offshore and high altitude sites, are preferred locations for wind farms. Typically full load hours of wind turbines vary between 16 and 57 percent annually, but might be higher in particularly favorable offshore sites.[43]

“Volkswagen Converting Zwickau Automotive Plant to Produce Electric Vehicles” • In a move that it believes is the first of its kind in the world for a major car factory, VW is converting its auto factory in Zwickau, Germany from internal combustion vehicle production to manufacture of electric vehicles. The plant makes 330,000 cars per year. [CleanTechnica]

Photovoltaics (PV) uses solar cells assembled into solar panels to convert sunlight into electricity. It's a fast-growing technology doubling its worldwide installed capacity every couple of years. PV systems range from small, residential and commercial rooftop or building integrated installations, to large utility-scale photovoltaic power station. The predominant PV technology is crystalline silicon, while thin-film solar cell technology accounts for about 10 percent of global photovoltaic deployment. In recent years, PV technology has improved its electricity generating efficiency, reduced the installation cost per watt as well as its energy payback time, and has reached grid parity in at least 30 different markets by 2014.[115] Financial institutions are predicting a second solar "gold rush" in the near future.[116][117][118]

Biomass, biogas and biofuels are burned to produce heat/power and in doing so harm the environment. Pollutants such as sulphurous oxides (SOx), nitrous oxides (NOx), and particulate matter (PM) are produced from the combustion of biomass; the World Health Organisation estimates that 7 million premature deaths are caused each year by air pollution.[77] Biomass combustion is a major contributor.[77][78][79]
If you do install an anemometer and measure the wind over one or more years, you should compare the annual average wind speed obtained from your anemometer data to the annual average of the nearest airport or meteo-station for that same year. This will tell you if your site is more or less windy than that airport or meteo-station, and by how much. Then compare that year’s data  to the long-term annual average wind speed, and you will know what to expect over the long term, corrected for your particular site. It will not be exact, but it will make your short-term anemometer data much more useful.
It is unfortunate to see how well marketing for small wind turbines is working: I often see people post questions on forums, where they are looking for a wind turbine “with a low cut-in wind speed”. Depending on whom you ask, the cut-in wind speed is either the wind speed where the turbine starts turning, or the wind speed where it starts to produce some power. For most wind turbines it is around 2.5 – 3.5 m/s (5.5 – 8 mph), and it is an utterly meaningless parameter.
There is more trouble with rated power: It only happens at a “rated wind speed”. And the trouble with that is there is no standard for rated wind speed. Since the energy in the wind increases with the cube of the wind speed, it makes a very large difference if rated power is measured at 10 m/s (22 mph), or 12 m/s (27 mph). For example, that 6 meter wind turbine from the previous section could reasonably be expected to produce 5.2 kW at 10 m/s, while it will do 9 kW at 12 m/s!
Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass.[99] As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Wood remains the largest biomass energy source today;[100] examples include forest residues – such as dead trees, branches and tree stumps –, yard clippings, wood chips and even municipal solid waste. In the second sense, biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including biofuels. Industrial biomass can be grown from numerous types of plants, including miscanthus, switchgrass, hemp, corn, poplar, willow, sorghum, sugarcane, bamboo,[101] and a variety of tree species, ranging from eucalyptus to oil palm (palm oil).
One 50 Amp 1000 Volt - 3 Phase Rectifier ---Intended for wind turbine rated for 50 amps continuous usage. ---This item is used to convert 3 phase AC to DC. ---Rectifier has spade terminals which will make for a clean and secure installation. No wondering if your wiring is going to come loose. ---One mounting hole to secure the body of the rectifier to your mounting box ---This item is not to me confused with a blocking diode to be used in DC motor applications or with solar. Powered by [eBay Turbo Lister] ( The free listing tool. List your items fast and easy and manage your active items. Froo | Froo Cross Sell, Free Cross Sell, Cross promote, eBay Marketing, eBay listing Apps, eBay Apps, eBay Application [FREE! Sellers: Add a FREE map to your listings. FREE!] (http://newage.mystoremaps.
Heat pumps and Thermal energy storage are classes of technologies that can enable the utilization of renewable energy sources that would otherwise be inaccessible due to a temperature that is too low for utilization or a time lag between when the energy is available and when it is needed. While enhancing the temperature of available renewable thermal energy, heat pumps have the additional property of leveraging electrical power (or in some cases mechanical or thermal power) by using it to extract additional energy from a low quality source (such as seawater, lake water, the ground, the air, or waste heat from a process).

Since you are working hard to read this rather lengthy article, here is some entertainment. The ‘intermission’ if you like. So, put your feet up and enjoy the next picture: It’s a prime example of much that is wrong with the small wind world. The fact that an installer would even consider installing in a place like that. Customers that are too uninformed to know better (and their installer clearly is not interested in educating them). Turbine manufacturers that deliver standard towers that are much too short to be effective; this tower plus turbine is just 23 feet tall! Then there is the claim by the manufacturer (dutifully parroted by the installer) that this turbine will offset “up to 30%” of their electricity bill. The last one is not really a lie I suppose: If in reality it offsets just 2% of the owners bill, technically that still falls within that “up to 30%”…
Wind turbines are generally inexpensive. They will produce electricity at between two and six cents per kilowatt hour, which is one of the lowest-priced renewable energy sources.[72] And as technology needed for wind turbines continues to improve, the prices will decrease as well. In addition, there is no competitive market for wind energy, as it does not cost money to get ahold of wind.[72] The main cost of wind turbines are the installation process. The average cost is between $48,000 and $65,000 to install. However, the energy harvested from the turbine will offset the installation cost, as well as provide virtually free energy for years after.[73]

Another situation where a small wind turbine can make good sense is in case your province, state, or country has rebates or other incentives that make it cheap to install one (just keep ongoing maintenance and repair cost in mind as well). While we would like to advocate responsible spending of government money, the small wind industry needs many more customers to mature. It takes time and installation numbers for manufacturers to work out the bugs, make better turbines, and make them cheaper.

The Sunforce 44444 400 Watt Wind Generator uses wind to generate power and run your appliances and electronics, helping to produce electricity at cabins and worksites far from existing power lines. Constructed from lightweight, weatherproof cast aluminum, this generator charges 12-volt batteries for large power demands in both land and marine environments. With a maximum power up to 400 watts, this device features a fully integrated regulator that automatically shuts down when the batteries are completely charged.
Wind-to-rotor efficiency (including rotor blade friction and drag) are among the factors impacting the final price of wind power.[16] Further inefficiencies, such as gearbox losses, generator and converter losses, reduce the power delivered by a wind turbine. To protect components from undue wear, extracted power is held constant above the rated operating speed as theoretical power increases at the cube of wind speed, further reducing theoretical efficiency. In 2001, commercial utility-connected turbines deliver 75% to 80% of the Betz limit of power extractable from the wind, at rated operating speed.[17][18][needs update]

You should know that we at Solacity love wind turbines! Can’t get enough of ’em. Where the neighbours see life-threatening, blade-shedding, bat-and-bird killing, noise-making contraptions, we see poetry in motion. Kinetic art at its finest; combining form, movement, and function all in one. We could stare at them for hours, while contemplating the meaning of life, the universe, and everything… and have… until the beer ran out. Despite all the information presented here, we are big fans of small wind turbines. This page is about informing you, so you can make a decision based on fact and not marketing hype.
In 2011 Mark Z. Jacobson, professor of civil and environmental engineering at Stanford University, and Mark Delucchi published a study on 100% renewable global energy supply in the journal Energy Policy. They found producing all new energy with wind power, solar power, and hydropower by 2030 is feasible and existing energy supply arrangements could be replaced by 2050. Barriers to implementing the renewable energy plan are seen to be "primarily social and political, not technological or economic". They also found that energy costs with a wind, solar, water system should be similar to today's energy costs.[153]
“If the U.S. continues this kind of thing, I’m afraid the credibility of the number one leader country of the world may be in serious question,” Mr. Ban said. “We must have a global vision. It’s not the American economy. If the world economy is shaken by climate consequences do you think the American economy will be able to survive? We all sink together.”
"Eggbeater" turbines, or Darrieus turbines, were named after the French inventor, Georges Darrieus.[31] They have good efficiency, but produce large torque ripple and cyclical stress on the tower, which contributes to poor reliability. They also generally require some external power source, or an additional Savonius rotor to start turning, because the starting torque is very low. The torque ripple is reduced by using three or more blades which results in greater solidity of the rotor. Solidity is measured by blade area divided by the rotor area. Newer Darrieus type turbines are not held up by guy-wires but have an external superstructure connected to the top bearing.[32]
He was able to begin installation sooner than promised. The finished product looks great. The exterior industrial grade electrical work they did looks stylish. The workers kept a clean job site and fully cleaned up, leaving my place neater than before they began. The workers were knowledgeable and helpful. Other than wishing that it was free, I don't know what they could have done better. I give them my highest recommendation because of a job superbly done.... read more

Within emerging economies, Brazil comes second to China in terms of clean energy investments. Supported by strong energy policies, Brazil has one of the world’s highest biomass and small-hydro power capacities and is poised for significant growth in wind energy investment. The cumulative investment potential in Brazil from 2010 to 2020 is projected as $67 billion.[155]

As of 2014, offshore wind power amounted to 8,771 megawatt of global installed capacity. Although offshore capacity doubled within three years (from 4,117 MW in 2011), it accounted for only 2.3% of the total wind power capacity. The United Kingdom is the undisputed leader of offshore power with half of the world's installed capacity ahead of Denmark, Germany, Belgium and China.

Wave power, which captures the energy of ocean surface waves, and tidal power, converting the energy of tides, are two forms of hydropower with future potential; however, they are not yet widely employed commercially. A demonstration project operated by the Ocean Renewable Power Company on the coast of Maine, and connected to the grid, harnesses tidal power from the Bay of Fundy, location of world's highest tidal flow. Ocean thermal energy conversion, which uses the temperature difference between cooler deep and warmer surface waters, has currently no economic feasibility.
Then I pick up a Home Power Magazine, or a Backwoods Home, or a Mother Earth News.  I read the letters to the editor and I think, These are my people!  This is my tribe—the tribe of folks striving for independence of thought and lifestyle, who are creative in their choice of building materials, who try to make responsible choices about how their choices affect the environment they live in.
It is unfortunate to see how well marketing for small wind turbines is working: I often see people post questions on forums, where they are looking for a wind turbine “with a low cut-in wind speed”. Depending on whom you ask, the cut-in wind speed is either the wind speed where the turbine starts turning, or the wind speed where it starts to produce some power. For most wind turbines it is around 2.5 – 3.5 m/s (5.5 – 8 mph), and it is an utterly meaningless parameter.

Wind energy research dates back several decades to the 1970s when NASA developed an analytical model to predict wind turbine power generation during high winds.[136] Today, both Sandia National Laboratories and National Renewable Energy Laboratory have programs dedicated to wind research. Sandia’s laboratory focuses on the advancement of materials, aerodynamics, and sensors.[137] The NREL wind projects are centered on improving wind plant power production, reducing their capital costs, and making wind energy more cost effective overall.[138] The Field Laboratory for Optimized Wind Energy (FLOWE) at Caltech was established to research renewable approaches to wind energy farming technology practices that have the potential to reduce the cost, size, and environmental impact of wind energy production.[139] The president of Sky WindPower Corporation thinks that wind turbines will be able to produce electricity at a cent/kWh at an average which in comparison to coal-generated electricity is a fractional of the cost.[140]

Materials for wind turbine parts other than the rotor blades (including the rotor hub, gearbox, frame, and tower) are largely composed of steel. Modern turbines use a couple of tons of copper for generators, cables, and such.[52] Smaller wind turbines have begun incorporating more aluminum based alloys into these components in an effort to make the turbines lighter and more efficient, and may continue to be used increasingly if fatigue and strength properties can be improved. Prestressed concrete has been increasingly used for the material of the tower, but still requires much reinforcing steel to meet the strength requirement of the turbine. Additionally, step-up gearboxes are being increasingly replaced with variable speed generators, increasing the demand for magnetic materials in wind turbines.[46] In particular, this would require an increased supply of the rare earth metal neodymium.
Since we mentioned maintenance: Consider that in a reasonably windy place a wind turbine can run 7000 hours or more per year. If it were a car, going at 50 km/h (30 mph), it would travel 350,000 km (or 200,000+ miles). That means you should plan for an annual inspection, and perform the needed maintenance (greasing for example), regardless of the recommendation of the manufacturer. It is just as important to inspect and maintain the tower annually. We know of a tower that collapsed because nuts worked themselves loose from their bolts over 2½ years time, no inspection nor maintenance were done during that time, ultimately leading to its undoing. Wind turbines and towers live in a very harsh environment. It is important to check for issues, such as loose bolts or tower guy wires that need re-tensioning, before they become a problem.
These residential renewable energy plans are sourced from 100% wind power generation. In addition, a Green Power plan lets you lock in a secure, fixed energy rate with the same key benefits as Champion Energy’s traditional electricity plans. This is an ideal choice for customers looking for ways to preserve the environment, conserve natural resources and promote the growth of renewable energy infrastructure.
One issue that has often raised concerns is the use of cadmium (Cd), a toxic heavy metal that has the tendency to accumulate in ecological food chains. It is used as semiconductor component in CdTe solar cells and as buffer layer for certain CIGS cells in the form of CdS.[141] The amount of cadmium used in thin-film PV modules is relatively small (5–10 g/m²) and with proper recycling and emission control techniques in place the cadmium emissions from module production can be almost zero. Current PV technologies lead to cadmium emissions of 0.3–0.9 microgram/kWh over the whole life-cycle.[121] Most of these emissions arise through the use of coal power for the manufacturing of the modules, and coal and lignite combustion leads to much higher emissions of cadmium. Life-cycle cadmium emissions from coal is 3.1 microgram/kWh, lignite 6.2, and natural gas 0.2 microgram/kWh.
While renewables have been very successful in their ever-growing contribution to electrical power there are no countries dominated by fossil fuels who have a plan to stop and get that power from renwables. Only Scotland and Ontario have stopped burning coal, largely due to good natural gas supplies. In the area of transportation, fossil fuels are even more entrenched and solutions harder to find.[198] It's unclear if there are failures with policy or renewable energy, but twenty years after the Kyoto Protocol fossil fuels are still our primary energy source and consumption continues to grow.[199]
Grid parity, the point at which the cost of photovoltaic electricity is equal to or cheaper than the price of grid power, is more easily achieved in areas with abundant sun and high costs for electricity such as in California and Japan.[80] In 2008, The levelized cost of electricity for solar PV was $0.25/kWh or less in most of the OECD countries. By late 2011, the fully loaded cost was predicted to fall below $0.15/kWh for most of the OECD and to reach $0.10/kWh in sunnier regions. These cost levels are driving three emerging trends: vertical integration of the supply chain, origination of power purchase agreements (PPAs) by solar power companies, and unexpected risk for traditional power generation companies, grid operators and wind turbine manufacturers.[81][dead link]