In October 2018, the American Council for an Energy-Efficient Economy (ACEEE) released its annual "State Energy Efficiency Scorecard." The scorecard concluded that states and electric utility companies are continuing to expand energy efficiency measures in order to meet clean energy goals. In 2017, the U.S. spent $6.6 billion in electricity efficiency programs. $1.3 billion was spent on natural gas efficiency. These programs resulted in 27.3 million megawatt hours (MWh) of electricity saved.[160]
The energy payback time (EPBT) of a power generating system is the time required to generate as much energy as is consumed during production and lifetime operation of the system. Due to improving production technologies the payback time has been decreasing constantly since the introduction of PV systems in the energy market.[128] In 2000 the energy payback time of PV systems was estimated as 8 to 11 years[129] and in 2006 this was estimated to be 1.5 to 3.5 years for crystalline silicon PV systems[121] and 1–1.5 years for thin film technologies (S. Europe).[121] These figures fell to 0.75–3.5 years in 2013, with an average of about 2 years for crystalline silicon PV and CIS systems.[130]
Gary W. had no power lines near by. The electric company told him it would cost $10,000 a pole. He chose to purchase our medium sized system, The Homestead, one the most popular we sell. For an investment of under $20 Grand, he now lives where he wants, he is not tethered to the power company, and he does not have to worry about black outs or disconnection notices for late payments.
Due to data transmission problems, structural health monitoring of wind turbines is usually performed using several accelerometers and strain gages attached to the nacelle to monitor the gearbox and equipments. Currently, digital image correlation and stereophotogrammetry are used to measure dynamics of wind turbine blades. These methods usually measure displacement and strain to identify location of defects. Dynamic characteristics of non-rotating wind turbines have been measured using digital image correlation and photogrammetry.[44] Three dimensional point tracking has also been used to measure rotating dynamics of wind turbines.[45]

Previously, the largest U.S. city fully powered by renewables was Burlington, Vermont (pop. 42,000), home to Senator Bernie Sanders, the jam band Phish and the original Ben & Jerry’s. Georgetown’s feat is all the more dramatic because it demolishes the notion that sustainability is synonymous with socialism and GMO-free ice cream. “You think of climate change and renewable energy, from a political standpoint, on the left-hand side of the spectrum, and what I’ve done is toss all those partisan political thoughts aside,” Ross says. “We’re doing this because it’s good for our citizens. Cheaper electricity is better. Clean energy is better than fossil fuels.”
The incentive to use 100% renewable energy, for electricity, transport, or even total primary energy supply globally, has been motivated by global warming and other ecological as well as economic concerns. The Intergovernmental Panel on Climate Change has said that there are few fundamental technological limits to integrating a portfolio of renewable energy technologies to meet most of total global energy demand. Renewable energy use has grown much faster than even advocates anticipated.[148] At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. Also, Professors S. Pacala and Robert H. Socolow have developed a series of "stabilization wedges" that can allow us to maintain our quality of life while avoiding catastrophic climate change, and "renewable energy sources," in aggregate, constitute the largest number of their "wedges".[149]
In the United States, one of the main problems with purchasing green energy through the electrical grid is the current centralized infrastructure that supplies the consumer’s electricity. This infrastructure has led to increasingly frequent brown outs and black outs, high CO2 emissions, higher energy costs, and power quality issues.[89] An additional $450 billion will be invested to expand this fledgling system over the next 20 years to meet increasing demand.[90] In addition, this centralized system is now being further overtaxed with the incorporation of renewable energies such as wind, solar, and geothermal energies. Renewable resources, due to the amount of space they require, are often located in remote areas where there is a lower energy demand. The current infrastructure would make transporting this energy to high demand areas, such as urban centers, highly inefficient and in some cases impossible. In addition, despite the amount of renewable energy produced or the economic viability of such technologies only about 20 percent will be able to be incorporated into the grid. To have a more sustainable energy profile, the United States must move towards implementing changes to the electrical grid that will accommodate a mixed-fuel economy.[91]
Technology improvements and policies to promote research, development, and installation of solar have resulted in tremendous drops in the cost of solar power over the past several years. Even without taking important health and safety costs (note that a Harvard study concluded in 2011 that the health costs of coal are $500 billion a year in the U.S.), environmental costs, energy security costs, and other social costs into account, solar is already cost-competitive with new electricity from conventional energy options like coal and nuclear energy (if you take into account how long it would take coal or nuclear plants to get built) — see the graphs below.
Usually however, renewable energy is derived from the mains electricity grid. This means that energy storage is mostly not used, as the mains electricity grid is organised to produce the exact amount of energy being consumed at that particular moment. Energy production on the mains electricity grid is always set up as a combination of (large-scale) renewable energy plants, as well as other power plants as fossil-fuel power plants and nuclear power. This combination however, which is essential for this type of energy supply (as e.g. wind turbines, solar power plants etc.) can only produce when the wind blows and the sun shines. This is also one of the main drawbacks of the system as fossil fuel powerplants are polluting and are a main cause of global warming (nuclear power being an exception). Although fossil fuel power plants too can be made emissionless (through carbon capture and storage), as well as renewable (if the plants are converted to e.g. biomass) the best solution is still to phase out the latter power plants over time. Nuclear power plants too can be more or less eliminated from their problem of nuclear waste through the use of nuclear reprocessing and newer plants as fast breeder and nuclear fusion plants.
All electrical turbine generators work because of the effects of moving a magnetic field past an electrical coil. When electrons flow through an electrical coil, a magnetic field is created around it. Likewise, when a magnetic field moves past a coil of wire, a voltage is induced in the coil as defined by Faraday’s law of magnetic induction causing electrons to flow.
Renewable energy and energy efficiency are sometimes said to be the "twin pillars" of sustainable energy policy. Both resources must be developed in order to stabilize and reduce carbon dioxide emissions. Efficiency slows down energy demand growth so that rising clean energy supplies can make deep cuts in fossil fuel use. If energy use grows too fast, renewable energy development will chase a receding target. A recent historical analysis has demonstrated that the rate of energy efficiency improvements has generally been outpaced by the rate of growth in energy demand, which is due to continuing economic and population growth. As a result, despite energy efficiency gains, total energy use and related carbon emissions have continued to increase. Thus, given the thermodynamic and practical limits of energy efficiency improvements, slowing the growth in energy demand is essential.[61] However, unless clean energy supplies come online rapidly, slowing demand growth will only begin to reduce total emissions; reducing the carbon content of energy sources is also needed. Any serious vision of a sustainable energy economy thus requires commitments to both renewables and efficiency.[62]
Renewable energy projects in many developing countries have demonstrated that renewable energy can directly contribute to poverty reduction by providing the energy needed for creating businesses and employment. Renewable energy technologies can also make indirect contributions to alleviating poverty by providing energy for cooking, space heating, and lighting. Renewable energy can also contribute to education, by providing electricity to schools.[140]
While many renewable energy projects are large-scale, renewable technologies are also suited to rural and remote areas and developing countries, where energy is often crucial in human development.[13] Former United Nations Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity.[14] As most of renewables provide electricity, renewable energy deployment is often applied in conjunction with further electrification, which has several benefits: Electricity can be converted to heat (where necessary generating higher temperatures than fossil fuels), can be converted into mechanical energy with high efficiency and is clean at the point of consumption.[15][16] In addition to that electrification with renewable energy is much more efficient and therefore leads to a significant reduction in primary energy requirements, because most renewables don't have a steam cycle with high losses (fossil power plants usually have losses of 40 to 65%).[17]
A typical house usually requires a home wind turbine with a 5 kW generating capacity to meet all its energy requirements. A turbine that offers this much power would have to be around 13 to 18 feet in diameter and positioned in an area where strong winds often pass through. There are also plenty of smaller, cheaper turbines, but these variants produce less power and are less reliable than their more expensive counterparts.
The W03083 Firman generator is perfect in and The W03083 Firman generator is perfect in and around the RV on the campsite while powering small appliances or while at home. Its Fuel Economy Mode reduces fuel consumption and promotes engine efficiency. It uses an OHV electric start engine (Max-Pro Series) for longer life higher performance and lower maintenance. ...  More + Product Details Close
There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of renewable energy. This research spans several areas of focus across the renewable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[157] Multiple federally supported research organizations have focused on renewable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners.[158] Sandia has a total budget of $2.4 billion[159] while NREL has a budget of $375 million.[160]

“Five New State Governors Aim for 100% Renewables” • Five governors-elect in Colorado, Illinois, Nevada, Connecticut, and Maine, states with a combined population of 26 million, put forth campaign goals of 100% renewable electricity. Currently, only California and Hawaii have a deadline to move to 100% zero-carbon electricity. [pv magazine International]
Solar heating systems are a well known second-generation technology and generally consist of solar thermal collectors, a fluid system to move the heat from the collector to its point of usage, and a reservoir or tank for heat storage and subsequent use. The systems may be used to heat domestic hot water, swimming pool water, or for space heating.[21] The heat can also be used for industrial applications or as an energy input for other uses such as cooling equipment.[22] In many climates, a solar heating system can provide a very high percentage (20 to 80%) of domestic hot water energy. Energy received from the sun by the earth is that of electromagnetic radiation. Light ranges of visible, infrared, ultraviolet, x-rays, and radio waves received by the earth through solar energy. The highest power of radiation comes from visible light. Solar power is complicated due to changes in seasons and from day to night. Cloud cover can also add to complications of solar energy, and not all radiation from the sun reaches earth because it is absorbed and dispersed due to clouds and gases within the earth's atmospheres.[23]
Renewable energy technologies are getting cheaper, through technological change and through the benefits of mass production and market competition. A 2011 IEA report said: "A portfolio of renewable energy technologies is becoming cost-competitive in an increasingly broad range of circumstances, in some cases providing investment opportunities without the need for specific economic support," and added that "cost reductions in critical technologies, such as wind and solar, are set to continue."[99]
As the primary source of biofuel in North America, many organizations are conducting research in the area of ethanol production. On the Federal level, the USDA conducts a large amount of research regarding ethanol production in the United States. Much of this research is targeted towards the effect of ethanol production on domestic food markets.[105] The National Renewable Energy Laboratory has conducted various ethanol research projects, mainly in the area of cellulosic ethanol.[106] Cellulosic ethanol has many benefits over traditional corn based-ethanol. It does not take away or directly conflict with the food supply because it is produced from wood, grasses, or non-edible parts of plants.[107] Moreover, some studies have shown cellulosic ethanol to be more cost effective and economically sustainable than corn-based ethanol.[108] Even if we used all the corn crop that we have in the United States and converted it into ethanol it would only produce enough fuel to serve 13 percent of the United States total gasoline consumption.[109] Sandia National Laboratories conducts in-house cellulosic ethanol research[110] and is also a member of the Joint BioEnergy Institute (JBEI), a research institute founded by the United States Department of Energy with the goal of developing cellulosic biofuels.[111]
Concentrator photovoltaics (CPV) systems employ sunlight concentrated onto photovoltaic surfaces for the purpose of electrical power production. Contrary to conventional photovoltaic systems, it uses lenses and curved mirrors to focus sunlight onto small, but highly efficient, multi-junction solar cells. Solar concentrators of all varieties may be used, and these are often mounted on a solar tracker in order to keep the focal point upon the cell as the sun moves across the sky.[147] Luminescent solar concentrators (when combined with a PV-solar cell) can also be regarded as a CPV system. Concentrated photovoltaics are useful as they can improve efficiency of PV-solar panels drastically.[148]
We've had our system running for about 6 months now, whole process took a little over 2 months, other than submitting a form to our HOA and reviewing/signing some docs, Brio took care of the whole thing. The system works great, one month after it was running our power bill with Duke went to $0! Even in the summer when it's usually really high, honestly we were kinda skeptical but it's worked as promised. We're in NC and mainly worked with Brendan, he explained everything clearly and has been very responsive whenever we had questions.... read more
In 2007, General Electric's Chief Engineer predicted grid parity without subsidies in sunny parts of the United States by around 2015; other companies predicted an earlier date:[85] the cost of solar power will be below grid parity for more than half of residential customers and 10% of commercial customers in the OECD, as long as grid electricity prices do not decrease through 2010.[81]
A solar cell, or photovoltaic cell (PV), is a device that converts light into electric current using the photovoltaic effect. The first solar cell was constructed by Charles Fritts in the 1880s.[5] The German industrialist Ernst Werner von Siemens was among those who recognized the importance of this discovery.[6] In 1931, the German engineer Bruno Lange developed a photo cell using silver selenide in place of copper oxide,[7] although the prototype selenium cells converted less than 1% of incident light into electricity. Following the work of Russell Ohl in the 1940s, researchers Gerald Pearson, Calvin Fuller and Daryl Chapin created the silicon solar cell in 1954.[8] These early solar cells cost 286 USD/watt and reached efficiencies of 4.5–6%.[9]