I wouldn’t consider myself a creative type.  Never painted a picture, never felt confident in color or fabric choices.  But I did get a real creativity boost living off-grid in northern New Mexico, raising children on one income in a home with caught water, gardening at 7600 feet in a climate that gets REALLY cold.  We built a house called an earthship from recycled materials and earth. 
Ross is now an energy celebrity, sitting on conference panels and lending Georgetown’s cachet to environmental-film screenings. And it isn’t only conservatives who buttonhole him. As if to prove the adage that no good deed goes unpunished, he also hears from people who worry about the impact of renewables. “They’ll come up to me and say with a straight face, ‘You know what? Those windmills are killing birds,’ ” Ross says. “ ‘Oh, really? I didn’t know that was a big interest of yours, but you know what the number-one killer of birds is in this country? Domestic house cats. Kill about four billion birds a year. You know what the number-two killer of birds is? Buildings they fly into. So you’re suggesting that we outlaw house cats and buildings?’ They go, ‘That's not exactly what I meant.’”
Energy storage is a collection of methods used to store electrical energy on an electrical power grid, or off it. Electrical energy is stored during times when production (especially from intermittent power plants such as renewable electricity sources such as wind power, tidal power, solar power) exceeds consumption, and returned to the grid when production falls below consumption. Pumped-storage hydroelectricity is used for more than 90% of all grid power storage. Costs of lithium ion batteries are dropping rapidly, and are increasingly being deployed as fast acting sources of grid power (i.e. operating reserve) and for domestic storage.
The world of small wind turbines is much like the wild-west of a century ago: Anything goes, and no claim is too bold. Wind turbine manufacturers will even routinely make claims that are not supported by the Laws of Physics. Energy production claims are often exaggerated, as are power curves. In fact, this is the rule, not the exception. Those manufacturers that tell the truth are the exception. Many manufacturers have never tested their wind turbines under real-world conditions. Some have never tested their turbine before selling it to unsuspecting customers. We are not joking! Because we sell grid-tie inverters for small wind turbines we have a front-row seat when it comes to actual operation of turbines of many makes and models. It turns out that some do not work; they self-destruct within days, and sometimes run away and blow their inverter within seconds after being turned onfor  the first time (clearly nobody at the factory bothered to ever test it).
Outline of energy Energy Units Conservation of energy Energetics Energy transformation Energy condition Energy transition Energy level Energy system Mass Negative mass Mass–energy equivalence Power Thermodynamics Quantum thermodynamics Laws of thermodynamics Thermodynamic system Thermodynamic state Thermodynamic potential Thermodynamic free energy Irreversible process Thermal reservoir Heat transfer Heat capacity Volume (thermodynamics) Thermodynamic equilibrium Thermal equilibrium Thermodynamic temperature Isolated system Entropy Free entropy Entropic force Negentropy Work Exergy Enthalpy
Solar energy, radiant light and heat from the sun, is harnessed using a range of ever-evolving technologies such as solar heating, photovoltaics, concentrated solar power (CSP), concentrator photovoltaics (CPV), solar architecture and artificial photosynthesis.[49][50] Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. Active solar technologies encompass solar thermal energy, using solar collectors for heating, and solar power, converting sunlight into electricity either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP).
List of books about renewable energy List of countries by electricity production from renewable sources List of geothermal power stations Lists of hydroelectric power stations List of largest hydroelectric power stations List of people associated with renewable energy List of renewable energy companies by stock exchange List of renewable energy organizations List of renewable energy topics by country List of U.S. states by electricity production from renewable sources
These include E-glass/carbon, E-glass/aramid and they present an exciting alternative to pure glass or carbon reinforcements. that the full replacement would lead to 80% weight savings, and cost increase by 150%, while a partial (30%) replacement would lead to only 90% cost increase and 50% weight reduction for 8 m turbine. The world currently longest wind turbine rotor blade, the 88.4 m long blade from LM Wind Power is made of carbon/glass hybrid composites. However, additional investigations are required for the optimal composition of the materials [50]
Biomass briquettes are increasingly being used in the developing world as an alternative to charcoal. The technique involves the conversion of almost any plant matter into compressed briquettes that typically have about 70% the calorific value of charcoal. There are relatively few examples of large-scale briquette production. One exception is in North Kivu, in eastern Democratic Republic of Congo, where forest clearance for charcoal production is considered to be the biggest threat to mountain gorilla habitat. The staff of Virunga National Park have successfully trained and equipped over 3500 people to produce biomass briquettes, thereby replacing charcoal produced illegally inside the national park, and creating significant employment for people living in extreme poverty in conflict-affected areas.[18]

Renewable energy and energy efficiency are sometimes said to be the "twin pillars" of sustainable energy policy. Both resources must be developed in order to stabilize and reduce carbon dioxide emissions. Efficiency slows down energy demand growth so that rising clean energy supplies can make deep cuts in fossil fuel use. If energy use grows too fast, renewable energy development will chase a receding target. A recent historical analysis has demonstrated that the rate of energy efficiency improvements has generally been outpaced by the rate of growth in energy demand, which is due to continuing economic and population growth. As a result, despite energy efficiency gains, total energy use and related carbon emissions have continued to increase. Thus, given the thermodynamic and practical limits of energy efficiency improvements, slowing the growth in energy demand is essential.[61] However, unless clean energy supplies come online rapidly, slowing demand growth will only begin to reduce total emissions; reducing the carbon content of energy sources is also needed. Any serious vision of a sustainable energy economy thus requires commitments to both renewables and efficiency.[62]


In the case of crystalline silicon modules, the solder material, that joins together the copper strings of the cells, contains about 36 percent of lead (Pb). Moreover, the paste used for screen printing front and back contacts contains traces of Pb and sometimes Cd as well. It is estimated that about 1,000 metric tonnes of Pb have been used for 100 gigawatts of c-Si solar modules. However, there is no fundamental need for lead in the solder alloy.[141]

There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of sustainable energy. This research spans several areas of focus across the sustainable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[94] Multiple federally supported research organizations have focused on sustainable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners.[95] Sandia has a total budget of $2.4 billion [96] while NREL has a budget of $375 million.[97]

Small wind turbines may be used for a variety of applications including on- or off-grid residences, telecom towers, offshore platforms, rural schools and clinics, remote monitoring and other purposes that require energy where there is no electric grid, or where the grid is unstable. Small wind turbines may be as small as a fifty-watt generator for boat or caravan use. Hybrid solar and wind powered units are increasingly being used for traffic signage, particularly in rural locations, as they avoid the need to lay long cables from the nearest mains connection point.[60] The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) defines small wind turbines as those smaller than or equal to 100 kilowatts.[61] Small units often have direct drive generators, direct current output, aeroelastic blades, lifetime bearings and use a vane to point into the wind.
If you can turn a wrench and operate an electric drill, you can build this simple generator in two days: one day for chasing down parts, and one day for assembling the components. The four major components include a vehicle alternator with a built-in voltage regulator, a General Motors (GM) fan and clutch assembly (I used one from a 1988 GM 350 motor), a tower or pole on which to mount the generator (15 feet of used 2-inch tubing cost me $20), and the metal to build a bracket for mounting the generator on the tower or pole. If you’re a Ford guy or a Mopar gal, that’s fine — just make sure your alternator has a built-in voltage regulator. You’ll also need some electrical cable or wires to hook the alternator up to your storage batteries. I used 8-gauge, 3-conductor cable pilfered from the oil patch. (And they said the transition from fossil fuels to renewables would take years. Pfft!)
It all started in Vermont in 1997. Our passion for protecting the environment led us to our mission: to use the power of consumer choice to change the way power is made. Today, as the longest-serving renewable energy retailer, we remain committed to sustainability every step of the way. By offering only products with an environmental benefit and operating with a zero-carbon footprint, we’re living our promise to the planet, inside and out.
When energy is purchased from the electricity network, the power reaching the consumer will not necessarily be generated from green energy sources. The local utility company, electric company, or state power pool buys their electricity from electricity producers who may be generating from fossil fuel, nuclear or renewable energy sources. In many countries green energy currently provides a very small amount of electricity, generally contributing less than 2 to 5% to the overall pool. In some U.S. states, local governments have formed regional power purchasing pools using Community Choice Aggregation and Solar Bonds to achieve a 51% renewable mix or higher, such as in the City of San Francisco.[76]
Stop getting twisted!! Gold Plated Contacts Heavy 30 amp Per conductor slip ring total 180 amps....Great for even heavy 12 volt environment wind generators as used in our Cat 5 and Freedom II Dual PMA Turbines This rotating connector will be great for the wind generator. The current can be split up in DC applications by using two conductors to cut down on the resistance. If you have application specific questions feel free to ask me before buying. Has 3 mounting holes in collar and long wires for easy installation Shared Specifications Wires 6 Current 0~30A Voltage 600 VDC/VAC Max speed 250RPM Overall diameter 30mm Length 66mm Contact Material Precious Metal:gold-gold Contact Resistance <2mOhm Housing Material Plastics Torque 0.06N.
Solar heating systems are a well known second-generation technology and generally consist of solar thermal collectors, a fluid system to move the heat from the collector to its point of usage, and a reservoir or tank for heat storage and subsequent use. The systems may be used to heat domestic hot water, swimming pool water, or for space heating.[21] The heat can also be used for industrial applications or as an energy input for other uses such as cooling equipment.[22] In many climates, a solar heating system can provide a very high percentage (20 to 80%) of domestic hot water energy. Energy received from the sun by the earth is that of electromagnetic radiation. Light ranges of visible, infrared, ultraviolet, x-rays, and radio waves received by the earth through solar energy. The highest power of radiation comes from visible light. Solar power is complicated due to changes in seasons and from day to night. Cloud cover can also add to complications of solar energy, and not all radiation from the sun reaches earth because it is absorbed and dispersed due to clouds and gases within the earth's atmospheres.[23]

Eight solar panels and one measly little wind generator supplied all the power we used. We bolted the pole that supported the wind generator to a wall of our house, which, sound-wise, turned the roof of the house into one big drumhead.  Oops! Live and learn. And when the wind REALLY blew—which was often—the thing broke. The manufacturer replaced the main unit several times before we gave up on wind power.
Ross, something of a libertarian at heart, entered politics because he was ticked off that the municipal code prohibited him from paving the driveway to his historic home entirely in period-appropriate brick. (The code required some concrete.) He joined the city council in 2008 and was elected to his first term as mayor in 2014. He often likens the city to “Mayberry R.F.D.,” and it does have a town square with a courthouse, a coffee shop where you’re bound to run into people you know and a swimming hole. But it also has Southwestern University, and in 2010 university officials, following a student initiative, told the city council they wanted their electricity to come from renewable sources. The city had already set a goal of getting 30 percent of its power that way, but now, Ross and his colleagues saw their opportunity.

Globally, the long-term technical potential of wind energy is believed to be five times total current global energy production, or 40 times current electricity demand, assuming all practical barriers needed were overcome. This would require wind turbines to be installed over large areas, particularly in areas of higher wind resources, such as offshore. As offshore wind speeds average ~90% greater than that of land, so offshore resources can contribute substantially more energy than land stationed turbines.[44] In 2014 global wind generation was 706 terawatt-hours or 3% of the worlds total electricity.[45]
Biomass briquettes are increasingly being used in the developing world as an alternative to charcoal. The technique involves the conversion of almost any plant matter into compressed briquettes that typically have about 70% the calorific value of charcoal. There are relatively few examples of large-scale briquette production. One exception is in North Kivu, in eastern Democratic Republic of Congo, where forest clearance for charcoal production is considered to be the biggest threat to mountain gorilla habitat. The staff of Virunga National Park have successfully trained and equipped over 3500 people to produce biomass briquettes, thereby replacing charcoal produced illegally inside the national park, and creating significant employment for people living in extreme poverty in conflict-affected areas.[18]
Al Gore says the reason is innovation. “The cost-reduction curve that came to technologies like computers, smartphones and flat-panel televisions has come to solar energy, wind energy and battery storage,” he says. “I remember being startled decades ago when people first started to explain to me that the cost of computing was being cut in half every 18 to 24 months. And now this dramatic economic change has begun to utterly transform the electricity markets.”

Construction of the Salt Tanks which provide efficient thermal energy storage[103] so that output can be provided after the sun goes down, and output can be scheduled to meet demand requirements.[104] The 280 MW Solana Generating Station is designed to provide six hours of energy storage. This allows the plant to generate about 38 percent of its rated capacity over the course of a year.[105]


The Vestas V164 has a rated capacity of 8 MW,[79] later upgraded to 9.5 MW.[80][81] The wind turbine has an overall height of 220 m (722 ft), a diameter of 164 m (538 ft), is for offshore use, and is the world's largest-capacity wind turbine since its introduction in 2014. The conventional drive train consist of a main gearbox and a medium speed PM generator. Prototype installed in 2014 at the National Test Center Denmark nearby Østerild. Series production began end of 2015.
The political purpose of incentive policies for PV is to facilitate an initial small-scale deployment to begin to grow the industry, even where the cost of PV is significantly above grid parity, to allow the industry to achieve the economies of scale necessary to reach grid parity. The policies are implemented to promote national energy independence, high tech job creation and reduction of CO2 emissions. Three incentive mechanisms are often used in combination as investment subsidies: the authorities refund part of the cost of installation of the system, the electricity utility buys PV electricity from the producer under a multiyear contract at a guaranteed rate, and Solar Renewable Energy Certificates (SRECs)
Rated power of a wind turbine may not be quite as meaningless as cut-in wind speed, though its use is limited. It could have some utility to quickly compare, or get a feel for, the size of the wind turbine, but only if those rated power numbers were taken at the same rated wind speed, and if the manufacturer is giving you a realistic number (many inflate rated power). A much better measure of turbine size is, simply, their diameter. As shown above it is by far the best predictor for power output.
VAWT type turbines have no inherent advantage over HAWT type turbines. There, we have said it! VAWTs do not do any better in turbulent wind than HAWTs. Leaving the Savonius type VAWTs out (the type that looks like an oil drum cut in half – they have very poor efficiency anyway), both horizontal and vertical type turbines rely on an airfoil, a wing, to produce power. Airfoils simply do not work well in turbulent air; the wind needs to hit them at just the right angle and eddies wreak havoc. Couple that with the insistence of vertical axis turbine manufacturers to install their devices on very short towers or rooftops, and you get the picture. It will not work.
In 2015, Ross wrote an op-ed for Time magazine about his city’s planned transition to renewables. “A town in the middle of a state that recently sported oil derricks on its license plates may not be where you’d expect to see leaders move to clean solar and wind generation,” he wrote. Lest readers get the wrong idea, he felt compelled to explain: “No, environmental zealots have not taken over City Council.”
These high strength magnets are usually made from rare earth materials such as neodymium iron (NdFe), or samarium cobalt (SmCo) eliminating the need for the field windings to provide a constant magnetic field, leading to a simpler, more rugged construction. Wound field windings have the advantage of matching their magnetism (and therefore power) with the varying wind speed but require an external energy source to generate the required magnetic field.
Besides the greening of fossil fuel and nuclear power plants, another option is the distribution and immediate use of power from solely renewable sources. In this set-up energy storage is again not necessary. For example, TREC has proposed to distribute solar power from the Sahara to Europe. Europe can distribute wind and ocean power to the Sahara and other countries. In this way, power is produced at any given time as at any point of the planet as the sun or the wind is up or ocean waves and currents are stirring. This option however is probably not possible in the short-term, as fossil fuel and nuclear power are still the main sources of energy on the mains electricity net and replacing them will not be possible overnight.
Second-generation technologies include solar heating and cooling, wind power, modern forms of bioenergy and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. The initial investment was prompted by energy security concerns linked to the oil crises (1973 and 1979) of the 1970s but the continuing appeal of these renewables is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials.
There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of sustainable energy. This research spans several areas of focus across the sustainable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[94] Multiple federally supported research organizations have focused on sustainable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners.[95] Sandia has a total budget of $2.4 billion [96] while NREL has a budget of $375 million.[97]

Large three-bladed horizontal-axis wind turbines (HAWT), with the blades upwind of the tower produce the overwhelming majority of windpower in the world today. These turbines have the main rotor shaft and electrical generator at the top of a tower, and must be pointed into the wind. Small turbines are pointed by a simple wind vane, while large turbines generally use a wind sensor coupled with a yaw system. Most have a gearbox, which turns the slow rotation of the blades into a quicker rotation that is more suitable to drive an electrical generator.[25] Some turbines use a different type of generator suited to slower rotational speed input. These don't need a gearbox, and are called direct-drive, meaning they couple the rotor directly to the generator with no gearbox in between. While permanent magnet direct-drive generators can be more costly due to the rare earth materials required, these gearless turbines are sometimes preferred over gearbox generators because they "eliminate the gear-speed increaser, which is susceptible to significant accumulated fatigue torque loading, related reliability issues, and maintenance costs."[26]
Index of solar energy articles List of concentrating solar thermal power companies List of photovoltaics companies List of photovoltaic power stations List of pioneering solar buildings List of rooftop photovoltaic installations List of solar car teams List of solar powered products List of solar thermal power stations People associated with solar power

Japan and China have national programs aimed at commercial scale Space-Based Solar Power (SBSP). The China Academy of Space Technology (CAST) won the 2015 International SunSat Design Competition with this video of their Multi-Rotary Joint design. Proponents of SBSP claim that Space-Based Solar Power would be clean, constant, and global, and could scale to meet all planetary energy demand.[56] A recent multi-agency industry proposal (echoing the 2008 Pentagon recommendation) won the SECDEF/SECSTATE/USAID Director D3 (Diplomacy, Development, Defense) Innovation Challenge.[57]
Kits (3) Wind Turbine Products (91)    - Wind Turbines (14)    - Primus Wind Turbines (2)    - SkyMAX Wind™ Turbines (1)    - Wind Turbine Blades (16)    - Wind Turbine Hubs & Hub Adapters (7)    - Wind Turbine PMAs & PMGs (20)    - Wind Turbine Tails (2)    - Brake Switches (5)    - Diversion Dump Load Resistors (8)    - Wind Turbine Hardware (18) Hydro Products (6)    - Freedom & Freedom II Hydroelectric PMGs (2)    - Hydro Parts & Accessories (4) Solar Products (71)    - Solar Panels (9)    - Solar Panel Kits (3)    - Solar Charge Controllers (35)    - Solar Panel Mounting (23) Charge Controllers (79)    - Wind Turbine Charge Controllers (1)    - MidNite Classic MPPT Charge Controllers (13)    - Solar Charge Controllers (35)    - Wind & Solar Hybrid Charge Controllers (34)    - SkyMAX Wind Hybrid Charge Controllers (1) Power Without Batteries (3) Power Inverters (134)    - Micro Inverters (4)    - Transfer Switches (1)    - UL Certified DC to AC Power Inverters (12)    - Grid Tie Feed Inverters (28)    - Low Frequency Inverter Chargers (41)    - Modified Sine Power Inverters (28)    - Pure Sine Wave Inverters (24)    - Inverter Cables (16)    - 220 Volt 50 Hz Inverters (2)    - Power Inverter Remotes (7) Cable & Electrical Components (130)    - Disconnect Switches (4)    - Steel Enclosures (3)    - Cable, Terminals, & Connectors (69)    - Fuses & Breakers (23)    - Surge Protection (2)    - 3 Phase Rectifiers (9)    - Blocking Diodes (7) Renewable Energy Appliances (16)    - Solar DC Powered Chest Freezers (7)    - DC Ceiling Fans (1)    - LED Lights (2)    - Other (6) DC and AC Meters (23)    - Amp Meters (12)    - Volt Meters (9)    - Watt Meters (2) DC Water Heater Elements (6) Pond Aeration (26)    - Aeration Kits (10)    - Air Pumps (7)    - Hoses & Accessories (10) DC to DC Step Down Converters (7) Batteries (29)    - Flooded Lead Acid Batteries (5)    - Lithium Ion Batteries (2)    - Sealed AGM Batteries (4)    - Battery Accessories (11)    - Battery Desulfators and Chargers (7)
Commercial concentrated solar power plants were first developed in the 1980s. As the cost of solar electricity has fallen, the number of grid-connected solar PV systems has grown into the millions and utility-scale solar power stations with hundreds of megawatts are being built. Solar PV is rapidly becoming an inexpensive, low-carbon technology to harness renewable energy from the Sun.
Using 100% renewable energy was first suggested in a Science paper published in 1975 by Danish physicist Bent Sørensen.[150] It was followed by several other proposals, until in 1998 the first detailed analysis of scenarios with very high shares of renewables were published. These were followed by the first detailed 100% scenarios. In 2006 a PhD thesis was published by Czisch in which it was shown that in a 100% renewable scenario energy supply could match demand in every hour of the year in Europe and North Africa. In the same year Danish Energy professor Henrik Lund published a first paper[151] in which he addresses the optimal combination of renewables, which was followed by several other papers on the transition to 100% renewable energy in Denmark. Since then Lund has been publishing several papers on 100% renewable energy. After 2009 publications began to rise steeply, covering 100% scenarios for countries in Europe, America, Australia and other parts of the world.[152]
Responsible development of all of America’s rich energy resources -- including solar, wind, water, geothermal, bioenergy & nuclear -- will help ensure America’s continued leadership in clean energy. Moving forward, the Energy Department will continue to drive strategic investments in the transition to a cleaner, domestic and more secure energy future.
A good match between generation and consumption is key for high self consumption, and should be considered when deciding where to install solar power and how to dimension the installation. The match can be improved with batteries or controllable electricity consumption.[94] However, batteries are expensive and profitability may require provision of other services from them besides self consumption increase.[95] Hot water storage tanks with electric heating with heat pumps or resistance heaters can provide low-cost storage for self consumption of solar power.[94] Shiftable loads, such as dishwashers, tumble dryers and washing machines, can provide controllable consumption with only a limited effect on the users, but their effect on self consumption of solar power may be limited.[94]
×